Zobrazeno 1 - 10
of 675
pro vyhledávání: '"A. Ueltschi"'
Publikováno v:
Ann. Henri Poincar\'e (2024)
We give a rigorous derivation of the free energy of (i) the classical Ising model on the triangular lattice with translation-invariant coupling constants, and (ii) the one-dimensional quantum Ising model. We use the method of Kac and Ward. The novel
Externí odkaz:
http://arxiv.org/abs/2407.05303
We investigate a disordered variant of Pitman's Chinese restaurant process where tables carry i.i.d. weights. Incoming customers choose to sit at an occupied table with a probability proportional to the product of its occupancy and its weight, or the
Externí odkaz:
http://arxiv.org/abs/2303.12623
Publikováno v:
Phys. Rev. B 107, L020409 (2023)
We provide a quantitative characterization of generic weakly first-order thermal phase transitions out of planar spin-nematic states in three-dimensional spin-one quantum magnets, based on calculations using Poisson-Dirichlet distributions (PD) withi
Externí odkaz:
http://arxiv.org/abs/2209.01055
Autor:
Björnberg, Jakob E., Ueltschi, Daniel
The method of reflection positivity and infrared bounds allows to prove the occurrence of phase transitions in systems with continuous symmetries. We review the method in the context of quantum spin systems.
Comment: 28 pages, 2 figures. This ar
Comment: 28 pages, 2 figures. This ar
Externí odkaz:
http://arxiv.org/abs/2204.12896
Publikováno v:
Commun. Math. Phys. 387, 1151-1189 (2021)
We consider quantum spins with $S\geq1$, and two-body interactions with $O(2S+1)$ symmetry. We discuss the ground state phase diagram of the one-dimensional system. We give a rigorous proof of dimerization for an open region of the phase diagram, for
Externí odkaz:
http://arxiv.org/abs/2101.11464
Publikováno v:
Electron. Commun. Probab. 25, paper no. 4, 1-12 (2020)
Let $(X_1,X_2,...)$ be a random partition of the unit interval $[0,1]$, i.e. $X_i\geq0$ and $\sum_{i\geq1} X_i=1$, and let $(\varepsilon_1,\varepsilon_2,...)$ be i.i.d. Bernoulli random variables of parameter $p \in (0,1)$. The Bernoulli convolution
Externí odkaz:
http://arxiv.org/abs/1907.05960
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Commun. Math. Phys. 375, 1629-1663 (2020)
We present a systematic analysis of quantum Heisenberg-, XY- and interchange models on the complete graph. These models exhibit phase transitions accompanied by spontaneous symmetry breaking, which we study by calculating the generating function of e
Externí odkaz:
http://arxiv.org/abs/1811.12834
Autor:
Benassi, Costanza, Ueltschi, Daniel
Publikováno v:
Commun. Math. Phys. 374, 525-547 (2020)
We introduce a family of loop soup models on the hypercubic lattice. The models involve links on the edges, and random pairings of the link endpoints on the sites. We conjecture that loop correlations of distant points are given by Poisson-Dirichlet
Externí odkaz:
http://arxiv.org/abs/1807.06564