Zobrazeno 1 - 10
of 674
pro vyhledávání: '"A. U. Klimyk"'
Autor:
N. Z. Iorgov, A. U. Klimyk
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 2005, Iss 2, Pp 225-262 (2005)
Externí odkaz:
https://doaj.org/article/59eb6d75f6d047cd90551c38e092abf5
Autor:
Jiri Patera, Anatoliy U. Klimyk
Publikováno v:
Symmetry, Integrability and Geometry: Methods and Applications, Vol 4, p 002 (2008)
We review and further develop the theory of $E$-orbit functions. They are functions on the Euclidean space $E_n$ obtained from the multivariate exponential function by symmetrization by means of an even part $W_{e}$ of a Weyl group $W$, corresponding
Externí odkaz:
https://doaj.org/article/74e71a42264941eaa284df4ccf48cfa4
Autor:
Anatoliy U. Klimyk
Publikováno v:
Symmetry, Integrability and Geometry: Methods and Applications, Vol 1, p 008 (2005)
Spectra of the position and momentum operators of the Biedenharn-Macfarlane q^-oscillator (with the main relation aa^+ - qa^+a = 1) are studied when q > 1. These operators are symmetric but not self-adjoint. They have a one-parameter family of self-a
Externí odkaz:
https://doaj.org/article/1e3539d0ffe745fa81086bc6493aaaa6
Autor:
Ivan I. Kachuryk, A. U. Klimyk
Publikováno v:
Modern Physics Letters A. 23:943-952
We construct a new model of the quantum oscillator, which is related to the discrete q-Hermite polynomials of the second type. The position and momentum operators in the model are appropriate operators of the Fock representation of a deformation of t
Autor:
A. U. Klimyk, Natig M. Atakishiyev
Publikováno v:
Modern Physics Letters A. 21:2205-2216
We elaborate on the Macfarlane–Biedenharn q-oscillator when q>1. In this case the position operator Q = a†+a and the momentum operator P = i(a†-a) are symmetric, but not self-adjoint. For this reason, one cannot specify spectra of Q and P. Sinc
Autor:
A U Klimyk
Publikováno v:
Journal of Physics A: Mathematical and General. 38:4447-4458
The position and momentum operators of the q-oscillator (with the main relation aa+ − qa+a = 1) are symmetric but not self-adjoint if q > 1. They have one-parameter family of self-adjoint extensions. These extensions are given explicitly. Their spe
Autor:
Natig M. Atakishiyev, A. U. Klimyk
Publikováno v:
Ukrainian Mathematical Journal. 57:728-737
By using two operators representable by Jacobi matrices, we introduce a family of q-orthogonal polynomials, which turn out to be dual with respect to alternative q-Charlier polynomials. A discrete orthogonality relation and the completeness property
Autor:
Nikolai Iorgov, A. U. Klimyk
Publikováno v:
International Journal of Mathematics and Mathematical Sciences. 2005:225-262
The aim of this paper is to give a complete classification of irreducible finite-dimensional representations of the nonstandardq-deformationU′q(son)(which does not coincide with the Drinfel'd-Jimbo quantum algebraUq(son)) of the universal envelopin
Autor:
N. M. Atakishiyev, A. U. Klimyk
Publikováno v:
Geometry and Dynamics. :43-67