Zobrazeno 1 - 10
of 24
pro vyhledávání: '"A. Turan GÜRKANLI"'
Autor:
Hans G. Feichtinger, A. Turan Gürkanli
Publikováno v:
International Journal of Mathematics and Mathematical Sciences, Vol 13, Iss 3, Pp 517-525 (1990)
Continuing a line of research initiated by Larsen, Liu and Wang [12], Martin and Yap [13], Gürkanli [15], and influenced by Reiter's presentation of Beurling and Segal algebras in Reiter [2,10] this paper presents the study of a family of Banach ide
Externí odkaz:
https://doaj.org/article/bd7ec464af20465a94c774ad3ba7ae33
Autor:
Mevlüde DOĞAN, A. Turan GÜRKANLI
Publikováno v:
Volume: 24, Issue: 2 738-749
Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi
Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi
Wp(IRn)Wp(IRn) uzayı ve bu uzaya ait bazı özellikler Krogstad [1] tarafından ispat edilmiştir. Bu çalışmada, Krogstad tarafından tanımlanan bu uzayın p=1p=1 için özel durumu olan W(IRn)W(IRn) uzayı ele alındı. ww, IRIR reel sayılar k
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f421ae42857945bfcdd71571c117fec1
https://dergipark.org.tr/tr/pub/baunfbed/issue/70370/1030138
https://dergipark.org.tr/tr/pub/baunfbed/issue/70370/1030138
Autor:
Öznur Kulak, A. Turan Gürkanli
Let $G$ be a locally compact abelian metric group with Haar measure $\lambda $ and $\hat{G}$ its dual with Haar measure $\mu ,$ and $\lambda ( G) $ is finite. Assume that$~1
Comment: 29 pages
Comment: 29 pages
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a19149ea6c9b0adeaadc49488023b28e
https://hdl.handle.net/20.500.12294/2867
https://hdl.handle.net/20.500.12294/2867
Autor:
A. Turan Gürkanli, Öznur Kulak
Publikováno v:
Mathematics and Statistics. 5:5-18
Let ω1, ω2 be slowly increasing functions and let ω3 be weight function on ℝn. In section 2 we define a bilinear multiplier from L(p1, q1, ω1dμ) (ℝn) × L(p2, q2, ω2dμ) (ℝn) to L(p3, q3, ω3dμ) (ℝn) by a bounded operator Bm, where 1
Autor:
A. Turan Gürkanli
Publikováno v:
Volume: 42, Issue: 6 3195-3203
Turkish Journal of Mathematics
Turkish Journal of Mathematics
Gürkanlı, Ahmet Turan (Arel Author)
Let (Omega, Sigma, mu) and (Omega, Sigma, upsilon) be two finite measure spaces and let L-p(),theta )(mu) and L-q),L-theta (upsilon) be two generalized grand Lebesgue spaces [9,10] , where 1 < p, q < infinit
Let (Omega, Sigma, mu) and (Omega, Sigma, upsilon) be two finite measure spaces and let L-p(),theta )(mu) and L-q),L-theta (upsilon) be two generalized grand Lebesgue spaces [9,10] , where 1 < p, q < infinit
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::55f045b83f81a8b5109f5b6ae871a19a
https://dergipark.org.tr/tr/pub/tbtkmath/issue/45652/575227
https://dergipark.org.tr/tr/pub/tbtkmath/issue/45652/575227
Autor:
Ismail Aydin, A. Turan Gürkanli
Publikováno v:
Acta Mathematica Scientia. 34:1098-1110
In [4], a new family W ( L p ( x ) , L m q ) of Wiener amalgam spaces was defined and investigated some properties of these spaces, where local component is a variable exponent Lebesgue space L p(x) (ℝ) and the global component is a weighted Lebesg
Autor:
Ayşi Sandikçi, A. Turan Gürkanli
Publikováno v:
Acta Mathematica Scientia. 31:141-158
Let g be a non-zero rapidly decreasing function and w be a weight function. In this article in analog to modulation space, we define the space M(p,q,w) (ℝd) to be the subspace of tempered distributions f ɛ S'(ℝd) such that the Gabor transform Vg
Autor:
Hakan Avci, A. Turan Gürkanli
Publikováno v:
Acta Mathematica Scientia. 27:107-116
WOS: 000243921200009 Let G be a locally compact abelian group. The main purpose of this article is to find the space of multipliers from the Lorentz space L(p(1), q(1)) (G) to L(p(2)', q(2)') (G). For p, q1 (G), discuss its properties and prove that
Autor:
Duyar Cenap, A. Turan Gürkanli
Publikováno v:
Acta Mathematica Scientia. 23:467-476
Let G be a locally compact Abelian group with Haar measure μ. In the present paper, first the authors discussed some properties of weighted Lorentz space. Then they defined the relative completion A of a subspace A of the weighted Lorentz space, and
Autor:
A. Turan Gürkanli
Publikováno v:
Trends in Mathematics ISBN: 9783319125763
Let \(L^{q ( x ) } (\mathbb{R} ) \) be variable exponent Lebesgue space and \(\ell^{ \{ q_{n} \} }\) be discrete analog of this space. In this work we define the amalgam spaces W(L p(x),L q(x)) and \(W ( L^{p ( x ) },\ell^{ \{ q_{n} \} } ) \), and di
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::b1b27fa226c399ac3c93a28ac30c628c
https://doi.org/10.1007/978-3-319-12577-0_19
https://doi.org/10.1007/978-3-319-12577-0_19