Zobrazeno 1 - 9
of 9
pro vyhledávání: '"A. T. Gaĭnov"'
Autor:
Yu. B. Rudyak, V. E. Govorov, I. A. Vinogradova, V. A. Skvortsov, P. S. Aleksandrov, L. A. Skornyakov, V. I. Sobolev, E. D. Solomentsev, I. S. Sharadze, E. A. Gorin, D. A. Ponomarev, B. I. Golubov, B. Z. Vulikh, B. A. Kushner, A. Ya. Khelemskiĭ, M. I. Kadets, B. M. Levitan, A. L. Shtern, L. N. Shevrin, A. G. Dragalin, A. B. Ivanov, V. M. Tikhomirov, M. Shirinbekov, O. V. Shalaevskiĭ, E. G. Sklyarenko, A. A. Mal’tsev, V. I. Danilov, M. I. Voĭtsekhovskiĭ, Yu. M. Gorchakov, V. A. Iskovskikh, L. N. Karmazina, A. B. Bakushinskiĭ, A. N. Shiryaev, L. N. Bol’shev, E. M. Chirka, V. K. Domanskiĭ, V. G. Karmanov, B. A. Sevast’yanov, E. V. Shikin, Sh. A. Alimov, V. A. Il’in, N. Kh. Rozov, A. F. Andreev, D. V. Anosov, L. N. Sretenskiĭ, D. D. Sokolov, L. N. Dovbysh, Yu. N. Subbotin, Yu. V. Prokhorov, A. V. Prokhorov, N. P. Korneĭchuk, V. P. Motornyĭ, P. P. Korovkin, I. A. Shishmarev, A. A. Zakharov, I. Kh. Sabitov, V. V. Petrov, L. D. Kudryavtsev, B. M. Bredikhin, E. A. Bredikhina, P. I. Lizorkin, L. P. Kuptsov, M. K. Samarin, V. I. Bityutskov, V. N. Remeslennikov, V. E. Voskresenskiĭ, V. T. Bazylev, M. S. Nikulin, B. L. Rozhdestvenskiĭ, E. G. Goluzina, G. V. Kuz’mina, P. K. Suetin, V. V. Filippov, V. A. Trenogin, O. A. Ivanova, V. L. Popov, E. B. Yanovskaya, I. V. Dolgachev, M. S. Tsalenko, V. I. Nechaev, A. V. Malyshev, A. T. Gaĭnov, A. I. Kostrikin, D. M. Smirnov, A. P. Shirokov, T. S. Fofanova, V. P. Chistyakov, A. M. Nakhushev, A. Z. Petrov, P. M. Tamrazov, V. E. Tarakanov, N. K. Nikol’skiĭ, B. S. Pavlov, I. N. Vrublevskaya, I. A. Kvasnikov, A. M. Kurbatov, V. S. Vladimiren, L. V. Taĭkov, D. N. Zubarev, A. A. Arsen’ev, I. B. Vapnyarskiĭ, D. A. Vladimirov, V. B. Kudryavtsev, Yu. I. Zhuravlev, Yu. M. Ryabukhin, V. N. Grishin, G. D. Kim, V. V. Fedorchuk, V. V. Sazonov, A. G. El’kin, V. P. Platonov, A. F. Leont’ev, P. S. Soltan, A. F. Shchekut’ev, A. V. Chernavskiĭ, A. P. Soldatov, B. P. Kufarev, Yu. D. Shmyglevskiĭ, I. N. Vekua, A. I. Yanushauskas, A. V. Gulin, Yu. V. Komlenko, E. L. Tonkov, A. V. Bitsadze, L. P. Vlasov, V. I. Pagurova, V. A. Irenogin, A. M. Zubkov, A. D. Bryuno, V. A. Yankov, N. I. Klimov
Publikováno v:
Encyclopaedia of Mathematics ISBN: 9780792329732
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::114e2eea056ff919f96714de2a27f807
https://doi.org/10.1007/978-1-4899-3797-1_2
https://doi.org/10.1007/978-1-4899-3797-1_2
Autor:
Christopher Hollings
The theory of semigroups is a relatively young branch of mathematics, with most of the major results having appeared after the Second World War. This book describes the evolution of (algebraic) semigroup theory from its earliest origins to the establ
This book is about three seemingly independent areas of mathematics: combinatorial group theory, the theory of Lie algebras and affine algebraic geometry. Indeed, for many years these areas were being developed fairly independently. Combinatorial gro
Autor:
L.A. Bokut', G.P.. Kukin
Even three decades ago, the words'combinatorial algebra'contrasting, for in stance, the words'combinatorial topology,'were not a common designation for some branch of mathematics. The collocation'combinatorial group theory'seems to ap pear first
This book contains papers presented at the Second International Conference on Algebra, held in Barnaul in August 1991 in honor of the memory of A. I. Shirshov (1921–1981). Many of the results presented here have not been published elsewhere in the
With contributions derived from presentations at an international conference, Non-Associative Algebra and Its Applications explores a wide range of topics focusing on Lie algebras, nonassociative rings and algebras, quasigroups, loops, and related sy
Polynomial Identities and Combinatorial Methods presents a wide range of perspectives on topics ranging from ring theory and combinatorics to invariant theory and associative algebras. It covers recent breakthroughs and strategies impacting research
Lectures in General Algebra is a translation from the Russian and is based on lectures on specialized courses in general algebra at Moscow University. The book starts with the basics of algebra. The text briefly describes the theory of sets, binary r