Zobrazeno 1 - 10
of 127
pro vyhledávání: '"A. S. Vatsala"'
Autor:
Aghalaya S. Vatsala, Govinda Pageni
Publikováno v:
Foundations, Vol 4, Iss 3, Pp 345-361 (2024)
Computation of the solution of the nonlinear Caputo fractional differential equation is essential for using q, which is the order of the derivative, as a parameter. The value of q can be determined to enhance the mathematical model in question using
Externí odkaz:
https://doaj.org/article/90a92b5bd5ab4a5ea23540654f9f4dad
Autor:
Z. Denton, A. S. Vatsala
Publikováno v:
Opuscula Mathematica, Vol 31, Iss 3, Pp 327-339 (2011)
Comparison results of the nonlinear scalar Riemann-Liouville fractional differential equation of order \(q\), \(0 \lt q \leq 1\), are presented without requiring Hölder continuity assumption. Monotone method is developed for finite systems of fracti
Externí odkaz:
https://doaj.org/article/8094a39e259041ff8cc2d21084d115d7
Monotone iterative technique for fractional differential equations with periodic boundary conditions
Autor:
J. D. Ramírez, A. S. Vatsala
Publikováno v:
Opuscula Mathematica, Vol 29, Iss 3, Pp 289-304 (2009)
In this paper we develop Monotone Method using upper and lower solutions for fractional differential equations with periodic boundary conditions. Initially we develop a comparison result and prove that the solution of the linear fractional differenti
Externí odkaz:
https://doaj.org/article/f3c70dc406f646ae8bc41805f4e7664e
Autor:
Jie Yang, A. S. Vatsala
Publikováno v:
Boundary Value Problems, Vol 2005, Iss 2, Pp 93-106 (2005)
We develop monotone iterative technique for a system of semilinear elliptic boundary value problems when the forcing function is the sum of Caratheodory functions which are nondecreasing and nonincreasing, respectively. The splitting of the forcing f
Externí odkaz:
https://doaj.org/article/9b0f78e8ca5f4a98bfbe2317e25b602a
Autor:
J. D. Ramírez, A. S. Vatsala
Publikováno v:
International Journal of Differential Equations, Vol 2012 (2012)
We develop a generalized monotone method using coupled lower and upper solutions for Caputo fractional differential equations with periodic boundary conditions of order , where . We develop results which provide natural monotone sequences or intertwi
Externí odkaz:
https://doaj.org/article/7d5624a90f8946a58ca299cf53eb5049
Autor:
A. S. Vatsala, Tanya G. Melton
Publikováno v:
Boundary Value Problems, Vol 2006 (2006)
The method of generalized quasilinearization for second-order boundary value problems has been extended when the forcing function is the sum of 2-hyperconvex and 2-hyperconcave functions. We develop two sequences under suitable conditions which conve
Externí odkaz:
https://doaj.org/article/33a38240375047a5a0f1f8078a37b30c
Autor:
Aghalaya S. Vatsala, Govinda Pageni
Publikováno v:
AppliedMath, Vol 3, Iss 4, Pp 730-740 (2023)
Computing the solution of the Caputo fractional differential equation plays an important role in using the order of the fractional derivative as a parameter to enhance the model. In this work, we developed a power series solution method to solve a li
Externí odkaz:
https://doaj.org/article/1172e8929bc3428eaebfad2efbb7f547
Autor:
Zachary Denton, Aghalaya S. Vatsala
Publikováno v:
Foundations, Vol 3, Iss 2, Pp 260-274 (2023)
One of the key applications of the Caputo fractional derivative is that the fractional order of the derivative can be utilized as a parameter to improve the mathematical model by comparing it to real data. To do so, we must first establish that the s
Externí odkaz:
https://doaj.org/article/ae8bd34de4424a53a8476899f7ca1c54
Publikováno v:
Foundations, Vol 2, Iss 4, Pp 1129-1142 (2022)
It is known that, from a modeling point of view, fractional dynamic equations are more suitable compared to integer derivative models. In fact, a fractional dynamic equation is referred to as an equation with memory. To demonstrate that the fractiona
Externí odkaz:
https://doaj.org/article/15460ec08ad343e6be6f24df48f4260a
Publikováno v:
Sleep and Vigilance. 6:223-228