Zobrazeno 1 - 10
of 580
pro vyhledávání: '"A. S. Il'yashenko"'
Publikováno v:
Journal of Computer and Systems Sciences International. 60:1-8
A telematics device is modeled as a two-stream Markov one-channel priority queuing system of finite capacity equipped with a probabilistic pushing out mechanism. Its probability, $$0 \leqslant \alpha \leqslant 1$$ , of pushing out is the control para
Autor:
M. Tsfasman, I. Arzhantsev, D. A. Timashev, E. Smirnov, L. Rybnikov, Sabir M. Gusein-Zade, I. Losev, Yu S Il'yashenko, O. Schwarzman
Publikováno v:
Moscow Mathematical Journal. 21:443-446
Autor:
Sabir M. Gusein-Zade, Yu S Il'yashenko, Konstantin Khanin, S. Shlosman, Ya. Sinai, M. Tsfasman
Publikováno v:
Moscow Mathematical Journal. 20:641-644
Publikováno v:
Moscow Mathematical Journal. 19:709-737
We classify global bifurcations in generic one-parameter local families of \vfs on $S^2$ with a parabolic cycle. The classification is quite different from the classical results presented in monographs on the bifurcation theory. As a by product we pr
Autor:
Yu S Il'yashenko
Publikováno v:
Recercat. Dipósit de la Recerca de Catalunya
instname
Publicacions Matemàtiques; 2014: Vol. Extra: New Trends in Dynamical Systems (Salou, 2012); p. 279-296
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Publ. Mat. 58 (2014), 279-296
instname
Publicacions Matemàtiques; 2014: Vol. Extra: New Trends in Dynamical Systems (Salou, 2012); p. 279-296
Recercat: Dipósit de la Recerca de Catalunya
Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya)
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
Publ. Mat. 58 (2014), 279-296
The author was partially supported by the grants NSF 0700973 and CNRS-RFBR 10-01-93115-NTSNILa. Complex limit cycle located in a neighborhood of a hyperbolic polycycle can not vanish under a small deformation that preserves the characteristic values
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bee04c507f66dccf1e075ea41285e76b
http://hdl.handle.net/2072/402629
http://hdl.handle.net/2072/402629
Autor:
Yuri I. Manin, Askold Khovanskii, Sergey Lando, Maxim Kontsevich, Igor Krichever, Albert N. Shiryaev, Grigorii Aleksandrovich Margulis, D. B. Fuchs, Valery V. Kozlov, S. Yu. Nemirovski, Albert Schwarz, Alexander Ivanovich Aptekarev, Dmitrii Valer'evich Treschev, Viktor M Buchstaber, Boris Sergeevich Kashin, S. P. Novikov, M. L. Gromov, Yu S Il'yashenko, Victor A. Vassiliev, Sergey Pavlovich Suetin, Evgenii Mikhailovich Chirka, Yu. G. Reshetnyak, N. G. Kruzhilin, V. M. Keselman, Yakov G. Sinai
Publikováno v:
Russian Mathematical Surveys. 73:935-939
Autor:
Fazoil I. Ataullakhanov, Irina V. Biktasheva, A. L. Afendikov, Yu S Il'yashenko, Yu. G. Zarkhin, Alexander Ivanovich Aptekarev, Vadim N. Biktashev, M. A. Roitberg, V. Yu. Lunin, V. S. Ryaben'kii, Vladimir Tikhomirov, R. D. Dagkesamanskii, Alexander I Khibnik, Roman Borisyuk, V. D. Lakhno, V. S. Posvyanskii, L. B. Ryashko, Evgeni V. Nikolaev, Alexandre Urzhumtsev, N. D. Vvedenskaya, Yakov G. Sinai, Nikolay K. Balabaev, A Tokarev, N.L. Lunina
Publikováno v:
Russian Mathematical Surveys. 72:185-198
Autor:
M. Tsfasman, Victor A. Vassiliev, Sergey Lando, Armen Sergeev, Igor Krichever, Yu S Il'yashenko, Sergey Natanzon, Maxim Kazarian
Publikováno v:
Moscow Mathematical Journal. 20:817-818
Autor:
Yu S Il'yashenko
Publikováno v:
Izvestiya: Mathematics. 80:50-112
This is the first paper in a series of two presenting a digest of the proof of the finiteness theorem for limit cycles of a planar polynomial vector field. At the same time we sketch the proof of the following two theorems: an analogous result for an
Autor:
Yu S Il’yashenko
This book is devoted to the following finiteness theorem: A polynomial vector field on the real plane has a finite number of limit cycles. To prove the theorem, it suffices to note that limit cycles cannot accumulate on a polycycle of an analytic vec