Zobrazeno 1 - 10
of 364 978
pro vyhledávání: '"A. Runge"'
Autor:
Qin, Xueyu1,2 (AUTHOR), Jiang, Zhenhua1,2 (AUTHOR) jiangzhenhua@buaa.edu.cn, Yan, Chao1,2 (AUTHOR)
Publikováno v:
Mathematics (2227-7390). Aug2024, Vol. 12 Issue 16, p2465. 23p.
Autor:
Cano, Begoña1 bcano@uva.es, Moreta, María Jesús2
Publikováno v:
ESAIM: Mathematical Modelling & Numerical Analysis (ESAIM: M2AN). May/Jun2024, Vol. 58 Issue 3, p1053-1085. 33p.
Autor:
Babkin, Ivan1 (AUTHOR) iababkin@etu.ru, Rybin, Vyacheslav2 (AUTHOR) vgrybin@etu.ru, Andreev, Valery1 (AUTHOR) vsandreev@etu.ru, Karimov, Timur1 (AUTHOR) tikarimov@etu.ru, Butusov, Denis2 (AUTHOR) dnbutusov@etu.ru
Publikováno v:
Mathematics (2227-7390). Apr2024, Vol. 12 Issue 7, p994. 21p.
Publikováno v:
Mathematics (2227-7390). Mar2024, Vol. 12 Issue 5, p711. 16p.
A unified theoretical framework is suggested to examine the energy dissipation properties at all stages of additive implicit-explicit Runge-Kutta (IERK) methods up to fourth-order accuracy for gradient flow problems. We construct some parameterized I
Externí odkaz:
http://arxiv.org/abs/2410.06463
Autor:
Hoang, Trung Hau
Nonlinear parabolic equations are central to numerous applications in science and engineering, posing significant challenges for analytical solutions and necessitating efficient numerical methods. Exponential integrators have recently gained attentio
Externí odkaz:
http://arxiv.org/abs/2410.00470
Autor:
Wei, Ping, Zou, Qing-Song
In this paper, we analyze any-order Runge-Kutta spectral volume schemes (RKSV(s,k)) for solving the one-dimensional scalar hyperbolic equation. The RKSV(s,k) was constructed by using the $s$-th explicit Runge-Kutta method in time-discretization which
Externí odkaz:
http://arxiv.org/abs/2409.13485
This work proposes and analyzes a new class of numerical integrators for computing low-rank approximations to solutions of matrix differential equation. We combine an explicit Runge-Kutta method with repeated randomized low-rank approximation to keep
Externí odkaz:
http://arxiv.org/abs/2409.06384
Autor:
López-Salas, J. G., Suárez-Taboada, M., Castro, M. J., Ferreiro-Ferreiro, A. M., García-Rodríguez, J. A.
Publikováno v:
J.G. L\'opez-Salas et. al. Second Order Finite Volume IMEX Runge-Kutta Schemes for Two Dimensional Parabolic PDEs in Finance. Hyperbolic Problems: Theory, Numerics, Applications. SEMA SIMAI Springer Series, vol 35. Springer, Cham, 2024
We present a novel and general methodology for building second-order finite volume implicit-explicit Runge-Kutta numerical schemes for solving two-dimensional financial parabolic PDEs with mixed derivatives. The methods achieve second-order convergen
Externí odkaz:
http://arxiv.org/abs/2409.01131
Autor:
Zhang, Gui-Lai1 (AUTHOR) zhangguilai@neuq.edu.cn, Zhu, Zhi-Yong1 (AUTHOR), Wang, Yu-Chen1 (AUTHOR), Liu, Chao1 (AUTHOR)
Publikováno v:
Mathematics (2227-7390). Oct2024, Vol. 12 Issue 19, p3002. 30p.