Zobrazeno 1 - 10
of 2 583
pro vyhledávání: '"A. Razani"'
Autor:
A. Razani, Giovany M. Figueiredo
Publikováno v:
Boundary Value Problems, Vol 2024, Iss 1, Pp 1-13 (2024)
Abstract In this paper, a semipositone anisotropic p-Laplacian problem − Δ p → u = λ f ( u ) , $$ -\Delta _{\overrightarrow{p}}u=\lambda f(u), $$ on a bounded domain with the Dirchlet boundary condition is considered, where A ( u q − 1 ) ≤
Externí odkaz:
https://doaj.org/article/b171515b57a74fd88537dfdb5555181e
Publikováno v:
Boundary Value Problems, Vol 2023, Iss 1, Pp 1-16 (2023)
Abstract Here, the existence and multiplicity of weak solutions to a generalized ( p ( ⋅ ) , q ( ⋅ ) ) $(p(\cdot ),q(\cdot ))$ -Laplace equation involving Leray–Lions type operators with Hardy potential are studied under Dirichlet boundary cond
Externí odkaz:
https://doaj.org/article/c2c6d423960c46cfa40cbfd32c89c0a1
Autor:
A. Razani
Publikováno v:
Boundary Value Problems, Vol 2022, Iss 1, Pp 1-10 (2022)
Abstract A competing anisotropic ( p , q ) $(p,q)$ -Laplacian − ∑ i = 1 N ∂ ∂ x i ( | ∂ u ∂ x i | p i − 2 − μ | ∂ u ∂ x i | q i − 2 ) ∂ u ∂ x i = f ( x , ϕ ⋆ u , ∇ ( ϕ ⋆ u ) ) $$ -\overset{N}{\underset{i=1}{\sum}}\f
Externí odkaz:
https://doaj.org/article/432c1f22aaa3408f8d1ac3bbd07223c6
Publikováno v:
Boundary Value Problems, Vol 2022, Iss 1, Pp 1-14 (2022)
Abstract We study the existence of multiple solutions to a nonlocal system involving fourth order Leray–Lions type operators along with singular terms under Navier boundary conditions. The method is based on the variational methods.
Externí odkaz:
https://doaj.org/article/c40023e86cc743278b109bf4766583ee
Autor:
A. Khaleghi, A. Razani
Publikováno v:
Boundary Value Problems, Vol 2022, Iss 1, Pp 1-11 (2022)
Abstract We study the existence and multiplicity of weak solutions for an elliptic problem involving p ( x ) $p(x)$ -Laplacian operator under Steklov boundary condition. The approach is based on variational methods.
Externí odkaz:
https://doaj.org/article/fe845c2984eb4f3fa1965b528bd526d6
Autor:
Giovany M. Figueiredo, A. Razani
Publikováno v:
Boundary Value Problems, Vol 2021, Iss 1, Pp 1-16 (2021)
Abstract In this paper, a nonhomogeneous elliptic equation of the form − A ( x , | u | L r ( x ) ) div ( a ( | ∇ u | p ( x ) ) | ∇ u | p ( x ) − 2 ∇ u ) = f ( x , u ) | ∇ u | L q ( x ) α ( x ) + g ( x , u ) | ∇ u | L s ( x ) γ ( x ) $
Externí odkaz:
https://doaj.org/article/b6237f483c6c4cc18f8c4ac2efab120d
Autor:
S. Heidari, A. Razani
Publikováno v:
Boundary Value Problems, Vol 2021, Iss 1, Pp 1-15 (2021)
Abstract In this paper, we study some results on the existence and multiplicity of solutions for a class of nonlocal quasilinear elliptic systems. In fact, we prove the existence of precise intervals of positive parameters such that the problem admit
Externí odkaz:
https://doaj.org/article/df7d1b9d85cb40f983babb3825402fb9
Publikováno v:
Boundary Value Problems, Vol 2020, Iss 1, Pp 1-14 (2020)
Abstract Here, a nonlocal nonlinear operator known as the fractional ( p , q ) $(p,q)$ -Laplacian is considered. The existence of a mountain pass solution is proved via critical point theory and variational methods. To this aim, the well-known theore
Externí odkaz:
https://doaj.org/article/7731776d26b24515bbbcb013f87e6aa9
Publikováno v:
Boundary Value Problems, Vol 2020, Iss 1, Pp 1-14 (2020)
Abstract The existence of at least one positive radial solution of the Neumann problem − Δ H n u + R ( ξ ) u = a ( | ξ | H n ) | u | p − 2 u − b ( | ξ | H n ) | u | q − 2 u , $$ -\Delta _{\mathbb{H}^{n}} u+R(\xi ) u=a \bigl( \vert \xi \ve
Externí odkaz:
https://doaj.org/article/5fe6b47a15f14db1aa246646937b9422
Autor:
Razani, Abdolrahman1 (AUTHOR) razani@sci.ikiu.ac.ir, Musbah, Zahirulhaq1 (AUTHOR), Safari, Farzaneh1 (AUTHOR), Sevim, Esra Sengelen2 (AUTHOR)
Publikováno v:
Boundary Value Problems. 10/1/2024, Vol. 2024 Issue 1, p1-15. 15p.