Zobrazeno 1 - 10
of 4 126
pro vyhledávání: '"A. Rashwan"'
Autor:
Khalid, Saif, Rashwan, Hatem A., Abdulwahab, Saddam, Abdel-Nasser, Mohamed, Quiroga, Facundo Manuel, Puig, Domenec
The performance of diagnostic Computer-Aided Design (CAD) systems for retinal diseases depends on the quality of the retinal images being screened. Thus, many studies have been developed to evaluate and assess the quality of such retinal images. Howe
Externí odkaz:
http://arxiv.org/abs/2409.10246
Autor:
Imagen-Team-Google, Baldridge, Jason, Bauer, Jakob, Bhutani, Mukul, Brichtova, Nicole, Bunner, Andrew, Castrejon, Lluis, Chan, Kelvin, Chen, Yichang, Dieleman, Sander, Du, Yuqing, Eaton-Rosen, Zach, Fei, Hongliang, de Freitas, Nando, Gao, Yilin, Gladchenko, Evgeny, Colmenarejo, Sergio Gómez, Guo, Mandy, Haig, Alex, Hawkins, Will, Hu, Hexiang, Huang, Huilian, Igwe, Tobenna Peter, Kaplanis, Christos, Khodadadeh, Siavash, Kim, Yelin, Konyushkova, Ksenia, Langner, Karol, Lau, Eric, Lawton, Rory, Luo, Shixin, Mokrá, Soňa, Nandwani, Henna, Onoe, Yasumasa, Oord, Aäron van den, Parekh, Zarana, Pont-Tuset, Jordi, Qi, Hang, Qian, Rui, Ramachandran, Deepak, Rane, Poorva, Rashwan, Abdullah, Razavi, Ali, Riachi, Robert, Srinivasan, Hansa, Srinivasan, Srivatsan, Strudel, Robin, Uria, Benigno, Wang, Oliver, Wang, Su, Waters, Austin, Wolff, Chris, Wright, Auriel, Xiao, Zhisheng, Xiong, Hao, Xu, Keyang, van Zee, Marc, Zhang, Junlin, Zhang, Katie, Zhou, Wenlei, Zolna, Konrad, Aboubakar, Ola, Akbulut, Canfer, Akerlund, Oscar, Albuquerque, Isabela, Anderson, Nina, Andreetto, Marco, Aroyo, Lora, Bariach, Ben, Barker, David, Ben, Sherry, Berman, Dana, Biles, Courtney, Blok, Irina, Botadra, Pankil, Brennan, Jenny, Brown, Karla, Buckley, John, Bunel, Rudy, Bursztein, Elie, Butterfield, Christina, Caine, Ben, Carpenter, Viral, Casagrande, Norman, Chang, Ming-Wei, Chang, Solomon, Chaudhuri, Shamik, Chen, Tony, Choi, John, Churbanau, Dmitry, Clement, Nathan, Cohen, Matan, Cole, Forrester, Dektiarev, Mikhail, Du, Vincent, Dutta, Praneet, Eccles, Tom, Elue, Ndidi, Feden, Ashley, Fruchter, Shlomi, Garcia, Frankie, Garg, Roopal, Ge, Weina, Ghazy, Ahmed, Gipson, Bryant, Goodman, Andrew, Górny, Dawid, Gowal, Sven, Gupta, Khyatti, Halpern, Yoni, Han, Yena, Hao, Susan, Hayes, Jamie, Heek, Jonathan, Hertz, Amir, Hirst, Ed, Hoogeboom, Emiel, Hou, Tingbo, Howard, Heidi, Ibrahim, Mohamed, Ike-Njoku, Dirichi, Iljazi, Joana, Ionescu, Vlad, Isaac, William, Jana, Reena, Jennings, Gemma, Jenson, Donovon, Jia, Xuhui, Jones, Kerry, Ju, Xiaoen, Kajic, Ivana, Ayan, Burcu Karagol, Kelly, Jacob, Kothawade, Suraj, Kouridi, Christina, Ktena, Ira, Kumakaw, Jolanda, Kurniawan, Dana, Lagun, Dmitry, Lavitas, Lily, Lee, Jason, Li, Tao, Liang, Marco, Li-Calis, Maggie, Liu, Yuchi, Alberca, Javier Lopez, Lorrain, Matthieu Kim, Lu, Peggy, Lum, Kristian, Ma, Yukun, Malik, Chase, Mellor, John, Mensink, Thomas, Mosseri, Inbar, Murray, Tom, Nematzadeh, Aida, Nicholas, Paul, Nørly, Signe, Oliveira, João Gabriel, Ortiz-Jimenez, Guillermo, Paganini, Michela, Paine, Tom Le, Paiss, Roni, Parrish, Alicia, Peckham, Anne, Peswani, Vikas, Petrovski, Igor, Pfaff, Tobias, Pirozhenko, Alex, Poplin, Ryan, Prabhu, Utsav, Qi, Yuan, Rahtz, Matthew, Rashtchian, Cyrus, Rastogi, Charvi, Raul, Amit, Rebuffi, Sylvestre-Alvise, Ricco, Susanna, Riedel, Felix, Robinson, Dirk, Rohatgi, Pankaj, Rosgen, Bill, Rumbley, Sarah, Ryu, Moonkyung, Salgado, Anthony, Salimans, Tim, Singla, Sahil, Schroff, Florian, Schumann, Candice, Shah, Tanmay, Shaw, Eleni, Shaw, Gregory, Shillingford, Brendan, Shivakumar, Kaushik, Shtatnov, Dennis, Singer, Zach, Sluzhaev, Evgeny, Sokolov, Valerii, Sottiaux, Thibault, Stimberg, Florian, Stone, Brad, Stutz, David, Su, Yu-Chuan, Tabellion, Eric, Tang, Shuai, Tao, David, Thomas, Kurt, Thornton, Gregory, Toor, Andeep, Udrescu, Cristian, Upadhyay, Aayush, Vasconcelos, Cristina, Vasiloff, Alex, Voynov, Andrey, Walker, Amanda, Wang, Luyu, Wang, Miaosen, Wang, Simon, Wang, Stanley, Wang, Qifei, Wang, Yuxiao, Weisz, Ágoston, Wiles, Olivia, Wu, Chenxia, Xu, Xingyu Federico, Xue, Andrew, Yang, Jianbo, Yu, Luo, Yurtoglu, Mete, Zand, Ali, Zhang, Han, Zhang, Jiageng, Zhao, Catherine, Zhaxybay, Adilet, Zhou, Miao, Zhu, Shengqi, Zhu, Zhenkai, Bloxwich, Dawn, Bordbar, Mahyar, Cobo, Luis C., Collins, Eli, Dai, Shengyang, Doshi, Tulsee, Dragan, Anca, Eck, Douglas, Hassabis, Demis, Hsiao, Sissie, Hume, Tom, Kavukcuoglu, Koray, King, Helen, Krawczyk, Jack, Li, Yeqing, Meier-Hellstern, Kathy, Orban, Andras, Pinsky, Yury, Subramanya, Amar, Vinyals, Oriol, Yu, Ting, Zwols, Yori
We introduce Imagen 3, a latent diffusion model that generates high quality images from text prompts. We describe our quality and responsibility evaluations. Imagen 3 is preferred over other state-of-the-art (SOTA) models at the time of evaluation. I
Externí odkaz:
http://arxiv.org/abs/2408.07009
Publikováno v:
SVU-International Journal of Agricultural Sciences, Vol 1, Iss 1, Pp 56-69 (2019)
Sorghum, like other cereals, is a good source of starch, that reached to about 60– 80% of kernels which had an brilliant potential for global industrial claims. In this study, starch had been isolated from tow sorghum varieties (low tannin; Giza 15
Externí odkaz:
https://doaj.org/article/f4ddeb53dfaf4774b63bb3273909f231
Autor:
Miao, Yanting, Loh, William, Kothawade, Suraj, Poupart, Pascal, Rashwan, Abdullah, Li, Yeqing
Text-to-image generative models have recently attracted considerable interest, enabling the synthesis of high-quality images from textual prompts. However, these models often lack the capability to generate specific subjects from given reference imag
Externí odkaz:
http://arxiv.org/abs/2407.12164
We present a one-shot text-to-image diffusion model that can generate high-resolution images from natural language descriptions. Our model employs a layered U-Net architecture that simultaneously synthesizes images at multiple resolution scales. We s
Externí odkaz:
http://arxiv.org/abs/2407.06079
Improved Out-of-Scope Intent Classification with Dual Encoding and Threshold-based Re-Classification
Detecting out-of-scope user utterances is essential for task-oriented dialogues and intent classification. Current methodologies face difficulties with the unpredictable distribution of outliers and often rely on assumptions about data distributions.
Externí odkaz:
http://arxiv.org/abs/2405.19967
Autor:
Vasconcelos, Cristina N., Rashwan, Abdullah, Waters, Austin, Walker, Trevor, Xu, Keyang, Yan, Jimmy, Qian, Rui, Luo, Shixin, Parekh, Zarana, Bunner, Andrew, Fei, Hongliang, Garg, Roopal, Guo, Mandy, Kajic, Ivana, Li, Yeqing, Nandwani, Henna, Pont-Tuset, Jordi, Onoe, Yasumasa, Rosston, Sarah, Wang, Su, Zhou, Wenlei, Swersky, Kevin, Fleet, David J., Baldridge, Jason M., Wang, Oliver
We address the long-standing problem of how to learn effective pixel-based image diffusion models at scale, introducing a remarkably simple greedy growing method for stable training of large-scale, high-resolution models. without the needs for cascad
Externí odkaz:
http://arxiv.org/abs/2405.16759
Adaptive Affinity-Based Generalization For MRI Imaging Segmentation Across Resource-Limited Settings
The joint utilization of diverse data sources for medical imaging segmentation has emerged as a crucial area of research, aiming to address challenges such as data heterogeneity, domain shift, and data quality discrepancies. Integrating information f
Externí odkaz:
http://arxiv.org/abs/2404.02738
Autor:
Marra, Luigi, Maceda, Guy Y. Cornejo, Meilán-Vila, Andrea, Guerrero, Vanesa, Rashwan, Salma, Noack, Bernd R., Discetti, Stefano, Ianiro, Andrea
Publikováno v:
J. Fluid Mech. 996 (2024) A26
We propose a data-driven methodology to learn a low-dimensional actuation manifold of controlled flows. The starting point is resolving snapshot flow data for a representative ensemble of actuations. Key enablers for the actuation manifold are isomet
Externí odkaz:
http://arxiv.org/abs/2403.03653
Autor:
Rashwan, Abdullah, Zhang, Jiageng, Taalimi, Ali, Yang, Fan, Zhou, Xingyi, Yan, Chaochao, Chen, Liang-Chieh, Li, Yeqing
In recent years, transformer-based models have dominated panoptic segmentation, thanks to their strong modeling capabilities and their unified representation for both semantic and instance classes as global binary masks. In this paper, we revisit pur
Externí odkaz:
http://arxiv.org/abs/2312.06052