Zobrazeno 1 - 10
of 53
pro vyhledávání: '"A. Raja Chandrasekar"'
Autor:
K. Raja Chandrasekar
Publikováno v:
AKCE International Journal of Graphs and Combinatorics, Pp 1-9 (2024)
A shortest [Formula: see text]-[Formula: see text] path between two vertices u and v of a graph G is a [Formula: see text]-[Formula: see text] geodesic of G. Let I[u, v] denote the set of all internal vertices lying on some [Formula: see text]-[Formu
Externí odkaz:
https://doaj.org/article/e12540e78def452a863d58d04f16fc13
Publikováno v:
Applied Surface Science Advances, Vol 20, Iss , Pp 100587- (2024)
The aim of this work was the preparation of an environmentally friendly protective coating on the AZ31B alloy using Flash plasma electrolytic oxidation (F-PEO) process. It was developed with different electrolyte compositions, that determine the morp
Externí odkaz:
https://doaj.org/article/4fa42842a5b64bddb0e6743921605295
Publikováno v:
Journal on Innovations in Teaching & Learning; Mar2024, Vol. 3 Issue 1, p25-35, 11p
Publikováno v:
Nursing Practice & Education; Mar2024, Vol. 1 Issue 1, p20-32, 13p
Publikováno v:
1. 9:18-25
Autor:
K. Raja Chandrasekar, S. Saravanakumar
Publikováno v:
Ural Mathematical Journal, Vol 6, Iss 2 (2020)
Let \(G\) be a graph with the vertex set \(V(G)\). A subset \(S\) of \(V(G)\) is an open packing set of \(G\) if every pair of vertices in \(S\) has no common neighbor in \(G.\) The maximum cardinality of an open packing set of \(G\) is the open pack
Externí odkaz:
https://doaj.org/article/30826dca8c34486db967db023285e82a
Autor:
Kamalan Kirubaharan Amirtharaj Mosas, Ashok Raja Chandrasekar, Arish Dasan, Amirhossein Pakseresht, Dušan Galusek
Publikováno v:
Gels, Vol 8, Iss 5, p 323 (2022)
Metallic materials such as stainless steel (SS), titanium (Ti), magnesium (Mg) alloys, and cobalt-chromium (Co-Cr) alloys are widely used as biomaterials for implant applications. Metallic implants sometimes fail in surgeries due to inadequate biocom
Externí odkaz:
https://doaj.org/article/99d06b8cf97f417aa8e4ca9f5adc99f1
Publikováno v:
Journal on Electronic & Automation Engineering; Dec2023, Vol. 2 Issue 4, p27-36, 10p
Autor:
Arumugam, S., Raja Chandrasekar, K.
Publikováno v:
Discrete Mathematics, Algorithms & Applications; Dec2019, Vol. 11 Issue 6, pN.PAG-N.PAG, 8p
Autor:
A. Mohammed Abid, K. Raja Chandrasekar
Publikováno v:
Electronic Notes in Discrete Mathematics. 63:211-218
An edge irredundant coloring of a graph G = ( V , E ) is an edge partition ∏ = { E 1 , E 2 , … , E k } of E into nonempty edge irredundant sets. The edge irratic number is the minimum order of an edge irredundant coloring of G and it is denoted b