Zobrazeno 1 - 10
of 41 979
pro vyhledávání: '"A. R. CROSS"'
Autor:
Han, HyoJung, Anwar, Mohamed, Pino, Juan, Hsu, Wei-Ning, Carpuat, Marine, Shi, Bowen, Wang, Changhan
Speech recognition and translation systems perform poorly on noisy inputs, which are frequent in realistic environments. Augmenting these systems with visual signals has the potential to improve robustness to noise. However, audio-visual (AV) data is
Externí odkaz:
http://arxiv.org/abs/2403.14402
Let $V$ be a finite dimensional vector space over a finite field. Suppose that $\mathscr{F}_1$, $\mathscr{F}_2$, $\dots$, $\mathscr{F}_r$ are $r$-cross $t$-intersecting families of $k$-subspaces of $V$. In this paper, we determine the extremal struct
Externí odkaz:
http://arxiv.org/abs/2310.18939
Autor:
Bondar, Eugenija A.
We classify the $\mathscr{R}$-cross-sections of the monoid of order-preserving transformations on the $n$-element chain in terms of certain binary trees.
Externí odkaz:
http://arxiv.org/abs/2208.09661
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Let $V$ be an $n$-dimensional vector space over the finite field $\mathbb{F}_q$, and ${V\brack k}$ denote the family of all $k$-dimensional subspaces of $V$. The families $\mathcal{F}_1\subseteq{V\brack k_1},\mathcal{F}_2\subseteq{V\brack k_2},\ldots
Externí odkaz:
http://arxiv.org/abs/2201.06339
Publikováno v:
In Plant Gene December 2023 36
Given integers $r\geq 2$ and $n,t\geq 1$ we call families $\mathcal{F}_1,\dots,\mathcal{F}_r\subseteq\mathscr{P}([n])$ $r$-cross $t$-intersecting if for all $F_i\in\mathcal{F}_i$, $i\in[r]$, we have $\vert\bigcap_{i\in[r]}F_i\vert\geq t$. We obtain a
Externí odkaz:
http://arxiv.org/abs/2010.11928
Publikováno v:
In Journal of Combinatorial Theory, Series A January 2023 193
Publikováno v:
IEEE Transactions on Very Large Scale Integration Systems; November 2024, Vol. 32 Issue: 11 p1993-2000, 8p
Publikováno v:
In Procedia Computer Science 2021 195:453-458