Zobrazeno 1 - 10
of 1 390
pro vyhledávání: '"A. Petitta"'
In this survey we provide an overview of nonlinear elliptic homogeneous boundary value problems featuring singular zero-order terms with respect to the unknown variable whose prototype equation is $$ -\Delta u = {u^{-\gamma}} \ \text{in}\ \Omega $$ w
Externí odkaz:
http://arxiv.org/abs/2409.00482
Publikováno v:
Discrete Contin. Dyn. Syst., 2025
In this paper we study existence and regularity of solutions to Dirichlet problems as $$ \begin{cases} - {\rm div}\left(|u|^m\frac{D u}{|D u|}\right) = f & \text{in}\;\Omega,\\ \newline u=0 & \text{on}\;\partial\Omega, \end{cases} $$ where $\Omega$ i
Externí odkaz:
http://arxiv.org/abs/2407.19948
In this paper we analyze the asymptotic behaviour as $p\to 1^+$ of solutions $u_p$ to $$ \left\{ \begin{array}{rclr} -\Delta_pu&=&\lambda|\nabla u|^{p-2}\nabla u\cdot\frac{x}{|x|^2}+ f&\quad \mbox{ in } \Omega,\\ u_p&=&0 &\quad \mbox{ on }\partial\Om
Externí odkaz:
http://arxiv.org/abs/2407.13411
We study existence of a weak solution for one-dimensional problems as \begin{equation}\label{intro}\tag{1} \begin{cases} \displaystyle -\frac{d}{dx}\left(a(x) \frac{d u}{dx}\right) = - \frac{d \phi (u) }{dx}- \frac{d g(x) }{dx}& \text{in}\;(0,L), u(0
Externí odkaz:
http://arxiv.org/abs/2407.04611
In this paper we provide a complete characterization of the regularity properties of the solutions associated to the homogeneous Dirichlet problem \begin{equation*} \begin{cases} \displaystyle - \Delta_1 u= h(u)f & \text{in } \Omega, \\ \newline u=0
Externí odkaz:
http://arxiv.org/abs/2405.13793
Publikováno v:
SIAM J. Math. Anal., 2024
In this paper we analyze the asymptotic behaviour as $p\to 1^+$ of solutions $u_p$ to $$ \left\{ \begin{array}{rclr} -\Delta_p u_p&=&\frac{\lambda}{|x|^p}|u_p|^{p-2}u_p+f&\quad \mbox{ in } \Omega,\\ u_p&=&0 &\quad \mbox{ on }\partial\Omega, \end{arra
Externí odkaz:
http://arxiv.org/abs/2401.15406
Publikováno v:
J. Differential Equations, 391 (2024), 334-369
In this paper we deal with the following boundary value problem \begin{equation*} \begin{cases} -\Delta_{p}u + g(u) | \nabla u|^{p} = h(u)f & \text{in $\Omega$,} \newline u\geq 0 & \text{in $\Omega$,} \newline u=0 & \text{on $\partial \Omega$,} \ \en
Externí odkaz:
http://arxiv.org/abs/2308.16129
In this paper we study existence and uniqueness of solutions to Dirichlet problems as $$ \begin{cases} g(u) -{\rm div}\left(\frac{D u}{\sqrt{1+|D u|^2}}\right) = f & \text{in}\;\Omega,\\ \newline u=0 & \text{on}\;\partial\Omega, \end{cases} $$ where
Externí odkaz:
http://arxiv.org/abs/2307.14154
Publikováno v:
J. Geom. Anal. (2024)
In this paper we prove existence of nonnegative bounded solutions for the non-autonomous prescribed mean curvature problem in non-parametric form on an open bounded domain $\Omega$ of $\mathbb{R}^N$. The mean curvature, that depends on the location o
Externí odkaz:
http://arxiv.org/abs/2304.13611
Publikováno v:
In Energy Reports December 2024 12:1221-1234