Zobrazeno 1 - 10
of 33 675
pro vyhledávání: '"A. Paraskevas"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
The adoption of increasingly complex deep models has fueled an urgent need for insight into how these models make predictions. Counterfactual explanations form a powerful tool for providing actionable explanations to practitioners. Previously, counte
Externí odkaz:
http://arxiv.org/abs/2411.02259
Deep Reinforcement learning (DRL) is used to enable autonomous navigation in unknown environments. Most research assume perfect sensor data, but real-world environments may contain natural and artificial sensor noise and denial. Here, we present a be
Externí odkaz:
http://arxiv.org/abs/2410.14616
Audio-text models trained via contrastive learning offer a practical approach to perform audio classification through natural language prompts, such as "this is a sound of" followed by category names. In this work, we explore alternative prompt templ
Externí odkaz:
http://arxiv.org/abs/2409.13676
Publikováno v:
DCASE, Oct 2024, Tokyo, Japan
Machine listening systems often rely on fixed taxonomies to organize and label audio data, key for training and evaluating deep neural networks (DNNs) and other supervised algorithms. However, such taxonomies face significant constraints: they are co
Externí odkaz:
http://arxiv.org/abs/2409.11746
Autor:
Olsen, Markus Ditlev Sjøgren, Ambsdorf, Jakob, Lin, Manxi, Taksøe-Vester, Caroline, Svendsen, Morten Bo Søndergaard, Christensen, Anders Nymark, Nielsen, Mads, Tolsgaard, Martin Grønnebæk, Feragen, Aasa, Pegios, Paraskevas
Congenital malformations of the brain are among the most common fetal abnormalities that impact fetal development. Previous anomaly detection methods on ultrasound images are based on supervised learning, rely on manual annotations, and risk missing
Externí odkaz:
http://arxiv.org/abs/2408.03654
Autor:
Stamos, Yannis
Publikováno v:
Journal of Greek Media & Culture; November 2023, Vol. 9 Issue: 2 p244-248, 5p
Autor:
Leon, Vasileios, Christofilos, Ilias, Nesiadis, Athanasios, Paraskevas, Iosif, Perrela, Juan, Ioannopoulos, Georgios, Tasoulis-Nonikas, Alexandros, Bernou, Mathieu, Reading, Jacques
Satellite Communications (SatCom) are a backbone of worldwide development. In contrast with the past, when the GEO satellites were the only means for such connectivity, nowadays the multi-orbital connectivity is emerging, especially with the use of s
Externí odkaz:
http://arxiv.org/abs/2407.10177
Autor:
Koloniari, Alexandra E., Koursoumpa, Evdokia C., Nousi, Paraskevi, Lampropoulos, Paraskevas, Passalis, Nikolaos, Tefas, Anastasios, Stergioulas, Nikolaos
The detection of gravitational waves has revolutionized our understanding of the universe, offering unprecedented insights into its dynamics. A major goal of gravitational wave data analysis is to speed up the detection and parameter estimation proce
Externí odkaz:
http://arxiv.org/abs/2407.07820