Zobrazeno 1 - 10
of 174 591
pro vyhledávání: '"A. P. Verma"'
Autor:
Solovyev, Dmitry
This paper initiates the study of invariants of links associated to infinite-dimensional representations of $U_q(\mathfrak{sl}_2)$ using graphical representation for quantum $6j$-symbols, the shadow world. We obtain formulae for $q3j$-symbols and $q6
Externí odkaz:
http://arxiv.org/abs/2410.18463
Autor:
Maksimau, Ruslan, Stroppel, Catharina
Naisse and Vaz defined an extension of KLR algebras to categorify Verma modules. We realise these algebras geometrically as convolution algebras in Borel-Moore homology. For this we introduce Grassmannian-Steinberg quiver flag varieties. They general
Externí odkaz:
http://arxiv.org/abs/2405.20262
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Murakami, Reiji
Kobayashi-Pevzner discovered in [Selecta Math., 2016] that the failure of the multiplicity-one property in the fusion rule of Verma modules of sl2 occurs exactly when the Rankin-Cohen bracket vanishes, and 1classified all the corresponding parameters
Externí odkaz:
http://arxiv.org/abs/2403.19106
Autor:
Shen, Che
We study the action of the quantum group $U_q(\widehat{\mathfrak{gl}_n})$ on the equivariant K-theory of affine Laumon spaces. We show that, at any highest weight away from the critical level, this can be identified with the contragredient dual Verma
Externí odkaz:
http://arxiv.org/abs/2402.08613
Let $\mathfrak{g}$ be a symmetrizable Kac-Moody Lie algebra with Cartan subalgebra $\mathfrak{h}$. We prove a unique factorization property for tensor products of parabolic Verma modules. More generally, we prove unique factorization for products of
Externí odkaz:
http://arxiv.org/abs/2311.13153
Let $\mathfrak{g}$ be a simple complex Lie algebra.A generalized Verma module induced from a one-dimensional representation of a parabolic subalgebra of $\mathfrak{g}$ is called a scalar generalized Verma module of $\mathfrak{g}$. In this article, we
Externí odkaz:
http://arxiv.org/abs/2310.07415
Autor:
Matsumoto, Ryoga
We construct special idempotents in $\mathrm{End}_{U_q(\mathfrak{sl}_2)}(M(\mu_1)\otimes\cdots \otimes M(\mu_n))$ like the Jones Wenzl projector where $M(\mu_i)$ is Verma module whose highest weight is $\mu_i$ and is complex number except non-negativ
Externí odkaz:
http://arxiv.org/abs/2401.02442
Autor:
Matsumoto, Ryoga
We construct special idempotents in $\mathrm{End}_{U_q(\mathfrak{sl}_2)}(M(\mu)\otimes V_1^{\otimes n})$ like the Jones Wenzl projector where $M(\mu)$ is Verma module whose highest weight is $\mu$ and $V_1$ is $2$-dimensional irreducible module.
Externí odkaz:
http://arxiv.org/abs/2312.10662