Zobrazeno 1 - 10
of 43
pro vyhledávání: '"A. P. N. Sá"'
Autor:
Fowdar, Udhav, Earp, Henrique N. Sá
This paper initiates a classification programme of flows of $\mathrm{SU}(2)$-structures on $4$-manifolds which have short-time existence and uniqueness. Our approach adapts a representation-theoretic method originally due to Bryant in the context of
Externí odkaz:
http://arxiv.org/abs/2407.03127
We explore three versions of the Laplacian coflow of $G_2$-structures on circle fibrations over Calabi--Yau 3-folds, interpreting their dimensional reductions to the K\"ahler geometry of the base. Precisely, we reduce Ans\"atze for the Laplacian cofl
Externí odkaz:
http://arxiv.org/abs/2406.15254
We introduce the coupled instanton equations for a metric, a spinor, a three-form, and a connection on a bundle, over a spin manifold. Special solutions in dimensions $6$ and $7$ arise, respectively, from the Hull--Strominger and the heterotic $\oper
Externí odkaz:
http://arxiv.org/abs/2404.12937
This work seeks to advance the understanding of the smooth structure of the moduli space of self-dual contact instantons (SDCI) on Sasakian 7-manifolds M. A neighborhood of a smooth point of M is locally modeled on the first cohomological group of an
Externí odkaz:
http://arxiv.org/abs/2404.09634
Autor:
Aggarwal, Daattavya, He, Yang-Hui, Heyes, Elli, Hirst, Edward, Earp, Henrique N. Sá, Silva, Tomás S. R.
Publikováno v:
Phys.Lett.B 850 (2024) 138517
We propose a machine learning approach to study topological quantities related to the Sasakian and $G_2$-geometries of contact Calabi-Yau $7$-manifolds. Specifically, we compute datasets for certain Sasakian Hodge numbers and for the Crowley-N\"ordst
Externí odkaz:
http://arxiv.org/abs/2310.03064
Autor:
Fowdar, Udhav, Earp, Henrique N. Sá
Publikováno v:
J Geom Anal 34, 183 (2024)
We formulate the gradient Dirichlet flow of $Sp(2)Sp(1)$-structures on $8$-manifolds, as the first systematic study of a geometric quaternion-K\"ahler (QK) flow. Its critical condition of \emph{harmonicity} is especially relevant in the QK setting, s
Externí odkaz:
http://arxiv.org/abs/2301.12494
We develop an abstract theory of flows of geometric $H$-structures, i.e., flows of tensor fields defining $H$-reductions of the frame bundle, for a closed and connected subgroup $H\subset SO(n)$, on any connected and oriented $n$-manifold with suffic
Externí odkaz:
http://arxiv.org/abs/2211.05197
Publikováno v:
Ann Glob Anal Geom 62 (2022), 367-389
We study the Laplacian flow and coflow on contact Calabi-Yau $7$-manifolds. We show that the natural initial condition leads to an ancient solution of the Laplacian flow with a finite time Type I singularity which is not a soliton, whereas it produce
Externí odkaz:
http://arxiv.org/abs/2111.01841
Publikováno v:
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) Vol. XXV (2024), 151-215
We formulate and study the isometric flow of $\mathrm{Spin}(7)$-structures on compact $8$-manifolds, as an instance of the harmonic flow of geometric structures. Starting from a general perspective, we establish Shi-type estimates and a correspondenc
Externí odkaz:
http://arxiv.org/abs/2109.06340
Publikováno v:
The Journal of Geometric Analysis 32, 240 (2022)
We describe the $10$-dimensional space of $Sp(2)$-invariant $G_2$-structures on the homogeneous $7$-sphere $S^7=Sp(2)/Sp(1)$ as $\mathbb{R}^+\times Gl^+(3,\mathbb{R})$. In those terms, we formulate a general Ansatz for $G_2$-structures, which realise
Externí odkaz:
http://arxiv.org/abs/2103.11552