Zobrazeno 1 - 10
of 38 504
pro vyhledávání: '"A. P. Lozano"'
Autor:
Athalye, Ashay, Kumar, Nishanth, Silver, Tom, Liang, Yichao, Lozano-Pérez, Tomás, Kaelbling, Leslie Pack
Our aim is to learn to solve long-horizon decision-making problems in highly-variable, combinatorially-complex robotics domains given raw sensor input in the form of images. Previous work has shown that one way to achieve this aim is to learn a struc
Externí odkaz:
http://arxiv.org/abs/2501.00296
Autor:
Alet, Ferran, Gehring, Clement, Lozano-Pérez, Tomás, Kawaguchi, Kenji, Tenenbaum, Joshua B., Kaelbling, Leslie Pack
The field of Machine Learning has changed significantly since the 1970s. However, its most basic principle, Empirical Risk Minimization (ERM), remains unchanged. We propose Functional Risk Minimization~(FRM), a general framework where losses compare
Externí odkaz:
http://arxiv.org/abs/2412.21149
Traditional locomotion strategies become ineffective at low Reynolds numbers, where viscous forces predominate over inertial forces. To adapt, microorganisms have evolved specialized structures like cilia and flagella for efficient maneuvering in vis
Externí odkaz:
http://arxiv.org/abs/2412.05712
Autor:
Di Nunno, Giulia, Lozano, Pere Díaz
Motivated by dynamic risk measures and conditional $g$-expectations, in this work we propose a numerical method to approximate the solution operator given by a Backward Stochastic Differential Equation (BSDE). The main ingredients for this are the Wi
Externí odkaz:
http://arxiv.org/abs/2412.03405
Developing methods to process irregularly structured data is crucial in applications like gene-regulatory, brain, power, and socioeconomic networks. Graphs have been the go-to algebraic tool for modeling the structure via nodes and edges capturing th
Externí odkaz:
http://arxiv.org/abs/2412.01576
Autor:
Zhang, Zuobai, Notin, Pascal, Huang, Yining, Lozano, Aurélie, Chenthamarakshan, Vijil, Marks, Debora, Das, Payel, Tang, Jian
Designing novel functional proteins crucially depends on accurately modeling their fitness landscape. Given the limited availability of functional annotations from wet-lab experiments, previous methods have primarily relied on self-supervised models
Externí odkaz:
http://arxiv.org/abs/2412.01108
Blind all-in-one image restoration models aim to recover a high-quality image from an input degraded with unknown distortions. However, these models require all the possible degradation types to be defined during the training stage while showing limi
Externí odkaz:
http://arxiv.org/abs/2411.18412
Autor:
Reina-Valero, José, Díaz-Morcillo, Alejandro, Gadea-Rodríguez, José, Gimeno, Benito, Lozano-Guerrero, Antonio José, Monzó-Cabrera, Juan, Navarro-Madrid, Jose R., Pedreño-Molina, Juan Luis
We present the first analysis of Dark Matter axion detection applying neural networks for the improvement of sensitivity. The main sources of thermal noise from a typical read-out chain are simulated, constituted by resonant and amplifier noises. Wit
Externí odkaz:
http://arxiv.org/abs/2411.17947
Autor:
Ahyoune, S., Altenmueller, K., Antolin, I., Basso, S., Brun, P., Candon, F. R., Castel, J. F., Cebrian, S., Chouhan, D., Della Ceca, R., Cervera-Cortes, M., Chernov, V., Civitani, M. M., Cogollos, C., Costa, E., Cotroneo, V., Dafni, T., Derbin, A., Desch, K., Diaz-Martin, M. C., Diaz-Morcillo, A., Diez-Ibanez, D., Pardos, C. Diez, Dinter, M., Doebrich, B., Drachnev, I., Dudarev, A., Ezquerro, A., Fabiani, S., Ferrer-Ribas, E., Finelli, F., Fleck, I., Galan, J., Galanti, G., Galaverni, M., Garcia, J. A., Garcia-Barcelo, J. M., Gastaldo, L., Giannotti, M., Giganon, A., Goblin, C., Goyal, N., Gu, Y., Hagge, L., Helary, L., Hengstler, D., Heuchel, D., Hoof, S., Iglesias-Marzoa, R., Iguaz, F. J., Iniguez, C., Irastorza, I. G., Jakovcic, K., Kaefer, D., Kaminski, J., Karstensen, S., Law, M., Lindner, A., Loidl, M., Loiseau, C., Lopez-Alegre, G., Lozano-Guerrero, A., Lubsandorzhiev, B., Luzon, G., Manthos, I., Margalejo, C., Marin-Franch, A., Marques, J., Marutzky, F., Menneglier, C., Mentink, M., Mertens, S., Miralda-Escude, J., Mirallas, H., Muleri, F., Muratova, V., Navarro-Madrid, J. R., Navick, X. F., Nikolopoulos, K., Notari, A., Nozik, A., Obis, L., Ortiz-de-Solorzano, A., O'Shea, T., von Oy, J., Pareschi, G., Papaevangelou, T., Perez, K., Perez, O., Picatoste, E., Pivovaroff, M. J., Porron, J., Puyuelo, M. J., Quintana, A., Redondo, J., Reuther, D., Ringwald, A., Rodrigues, M., Rubini, A., Rueda-Teruel, S., Rueda-Teruel, F., Ruiz-Choliz, E., Ruz, J., Schaffran, J., Schiffer, T., Schmidt, S., Schneekloth, U., Schoenfeld, L., Schott, M., Segui, L., Singh, U. R., Soffitta, P., Spiga, D., Stern, M., Straniero, O., Tavecchio, F., Unzhakov, E., Ushakov, N. A., Vecchi, G., Vogel, J. K., Voronin, D. M., Ward, R., Weltman, A., Wiesinger, C., Wolf, R., Yanes-Diaz, A., Yu, Y.
BabyIAXO is the intermediate stage of the International Axion Observatory (IAXO) to be hosted at DESY. Its primary goal is the detection of solar axions following the axion helioscope technique. Axions are converted into photons in a large magnet tha
Externí odkaz:
http://arxiv.org/abs/2411.13915
We present a novel approach, MAGIC (manipulation analogies for generalizable intelligent contacts), for one-shot learning of manipulation strategies with fast and extensive generalization to novel objects. By leveraging a reference action trajectory,
Externí odkaz:
http://arxiv.org/abs/2411.09627