Zobrazeno 1 - 6
of 6
pro vyhledávání: '"A. O. Kondyukov"'
Autor:
T. G. Sukacheva, A. O. Kondyukov
Publikováno v:
Differential Equations. 53:1054-1061
We describe the phase space of the first initial–boundary value problem for a system of partial differential equations modeling the motion of an incompressible viscoelastic Kelvin–Voigt fluid of nonzero order in the Earth magnetic field. In the f
Autor:
S. I. Kadchenko, A. O. Kondyukov
Publikováno v:
Journal of Computational and Engineering Mathematics. 3:40-47
The article developed algorithms for the numerical solution of the initial - boundary problem of the flow of an incompressible viscoelastic Kelvin--Voigt fluid in the Earth's magnetic field. The theorem on an existence and uniqueness of this problem
Autor:
A. O. Kondyukov, T. G. Sukacheva
Publikováno v:
Journal of Physics: Conference Series. 1658:012028
This work is aimed at studying a higher-order model of magnetohydrodynamics in regards to external effects on a fluid. The first initial boundary value problem for a system of higher-order Kelvin-Voigt equations in the Earth’s magnetic field is con
Autor:
A. O. Kondyukov, T. G. Sukacheva
Publikováno v:
Computational Mathematics and Mathematical Physics. 55:823-828
The phase space of the Dirichlet initial-boundary value problem for a system of partial differential equations modeling the flow of an incompressible viscoelastic Kelvin-Voigt fluid of nonzero order is described. The investigation is based on the the
Autor:
T. G. Sukacheva, A. O. Kondyukov
Publikováno v:
Differential Equations. 51:502-509
We describe the phase space of the first initial-boundary value problem for a system of partial differential equations modeling the motion of a viscoelastic incompressible Kelvin-Voigt fluid in the magnetic field of the Earth. By using the theory of
Autor:
T. G. Sukacheva, A. O. Kondyukov
Publikováno v:
Bulletin of the South Ural State University. Series "Mathematical Modelling, Programming and Computer Software". 7:5-21
The article surveys the works of T.G. Sukacheva and her students studying the models of incompressible viscoelastic Kelvin Voigt uids in the framework of the theory of semilinear Sobolev-type equations. We focus on the unstable case because of greate