Zobrazeno 1 - 10
of 10 287
pro vyhledávání: '"A. Mrowka"'
Autor:
Zhuang, Zipei
We proved that the dimension of the F-vector space J#(G) for a plane trivalent graph G, defined by Kronheimer and Mrowka using their SO(3) instanton Floer homology, is equal to the number of Tait colorings of G.
Externí odkaz:
http://arxiv.org/abs/2202.13091
Autor:
Geneviève Warland
Publikováno v:
BMGN: Low Countries Historical Review, Vol 139 (2024)
Externí odkaz:
https://doaj.org/article/5fe5d0b4d9fa4534906f95022d4d8178
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Boozer, David
Kronheimer and Mrowka recently suggested a possible approach towards a new proof of the four color theorem that does not rely on computer calculations. Their approach is based on a functor $J^\sharp$, which they define using gauge theory, from the ca
Externí odkaz:
http://arxiv.org/abs/1908.07133
Autor:
Gong, Sherry
Kronheimer and Mrowka introduced a new knot invariant, called $s^\sharp$, which is a gauge theoretic analogue of Rasmussen's $s$ invariant. In this article, we compute Kronheimer and Mrowka's invariant for some classes of knots, including algebraic k
Externí odkaz:
http://arxiv.org/abs/1908.05018
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
In Topology and its Applications 1 February 2021 288
Publikováno v:
In Advances in Mathematics 6 January 2021 376
We introduce and study combinatorial equivariant analogues of the Kronheimer--Mrowka homology theory of planar trivalent graphs.
Comment: 53 pages, 23 tikz figures
Comment: 53 pages, 23 tikz figures
Externí odkaz:
http://arxiv.org/abs/1808.09662
Publikováno v:
In Topology and its Applications 15 August 2020 282