Zobrazeno 1 - 10
of 32
pro vyhledávání: '"A. Mena-Contla"'
Publikováno v:
In Optik December 2021 248
Publikováno v:
In Optik December 2021 247
Publikováno v:
In Optik November 2021 246
Autor:
Mena-Contla, A., Serkin, V.N., Belyaeva, T.L., Peña-Moreno, R., Agüero, M.A., Hernandez-Tenorio, C., Morales-Lara, L.
Publikováno v:
In Optik May 2018 161:187-195
Autor:
Mena-Contla, A., Serkin, V.N., Belyaeva, T.L., Peña-Moreno, R., Agüero, M.A., Hernandez-Tenorio, C., Morales-Lara, L.
Publikováno v:
In Optik April 2018 159:315-323
Autor:
L. Morales-Lara, C. Hernandez-Tenorio, T.L. Belyaeva, Vladimir N Serkin, A. Mena-Contla, M. Aguero, R. Peña-Moreno
Publikováno v:
Optik. 161:187-195
In view of the fact that the nonlinear Schrodinger equation model has a wide range of applicability, from nonlinear femtosecond optics, Bose–Einstein condensates and plasmas, to ocean extreme (monster) waves and hurricanes, we conclude that existin
Autor:
L. Morales-Lara, C. Hernandez-Tenorio, R. Peña-Moreno, T.L. Belyaeva, Vladimir N Serkin, A. Mena-Contla, M. Aguero
Publikováno v:
Optik. 159:315-323
Inspirited by many remarkable but, obviously, only formal analogies appearing within the framework of the nonlinear Schrodinger equation model from nonlinear femtosecond optics, Bose–Einstein condensates and plasmas, to ocean extreme waves and hurr
Publikováno v:
Optik. 247:167859
Our direct computer experiments reveal the main features of the induced modulational instability in the sign-reversal dispersion traps and offer a clearer view of how nonlinear analogies to the “deja vu” phenomena have arisen. We demonstrate the
Publikováno v:
Optik. 248:168046
We clarify an analytical approach in the theory of modulational instability developed in the framework of the nonautonomous nonlinear Schrodinger equation model taking into account three mathematical models of the Raman self-scattering effect and arb
Publikováno v:
Optik. 246:167772
The induced modulational instability is studied in the framework of the nonautonomous nonlinear Schrodinger equation (NLSE) model with varying dispersion and nonlinearity. The Hasegawa algorithm of the analysis of the modulational instability (MI) is