Zobrazeno 1 - 10
of 3 638
pro vyhledávání: '"A. Mattheus"'
For a $k$-uniform hypergraph $F$ and a positive integer $n$, the Ramsey number $r(F,n)$ denotes the minimum $N$ such that every $N$-vertex $F$-free $k$-uniform hypergraph contains an independent set of $n$ vertices. A hypergraph is $\textit{slowly gr
Externí odkaz:
http://arxiv.org/abs/2409.01442
We continue our investigation of Erd\H{o}s-Ko-Rado (EKR) sets of flags in spherical buildings. In previous work, we used the theory of buildings and Iwahori-Hecke algebras to obtain upper bounds on their size. As the next step towards the classificat
Externí odkaz:
http://arxiv.org/abs/2408.05015
Autor:
Mattheus, Sam, Van de Voorde, Geertrui
We use techniques from algebraic and extremal combinatorics to derive upper bounds on the number of independent sets in several (hyper)graphs arising from finite geometry. In this way, we obtain asymptotically sharp upper bounds for partial ovoids an
Externí odkaz:
http://arxiv.org/abs/2404.05305
Extensive research shows that consumers are generally averse to price discrimination. However, instruments of differential pricing can benefit consumer surplus and alleviate inequity through targeted price discounts. This paper examines how these out
Externí odkaz:
http://arxiv.org/abs/2404.03581
For a field $\mathbb{F}$ and integers $d$ and $k$, a set ${\cal A} \subseteq \mathbb{F}^d$ is called $k$-nearly orthogonal if its members are non-self-orthogonal and every $k+1$ vectors of ${\cal A}$ include an orthogonal pair. We prove that for ever
Externí odkaz:
http://arxiv.org/abs/2404.01057
The resource theory of quantum thermodynamics has emerged as a powerful tool for exploring the out-of-equilibrium dynamics of microscopic and highly correlated systems. Recently, it has been employed in photoisomerization, a mechanism facilitating vi
Externí odkaz:
http://arxiv.org/abs/2310.17585
Autor:
Mattheus Torquato, Eliel Gomes da Silva Neto, Magno de Assis Verly Heringer, Elisa Maria Baggio-Saitovich, Emilson Ribeiro Viana, Ronaldo Sergio de Biasi
Publikováno v:
Journal of Materials Research and Technology, Vol 33, Iss , Pp 7380-7390 (2024)
Recently, cubic ferrites (CFs) have been widely explored in biomedical applications, especially those that display superparamagnetism behavior due to the desirable absence of a remanent field. In this study, we report the self-stabilization of the ma
Externí odkaz:
https://doaj.org/article/6ea6cc4e8cc14aa3b0e0f54ad95e9c7f
Autor:
Rebekka Wegmann, Ximena Bonilla, Ruben Casanova, Stéphane Chevrier, Ricardo Coelho, Cinzia Esposito, Joanna Ficek-Pascual, Sandra Goetze, Gabriele Gut, Francis Jacob, Andrea Jacobs, Jack Kuipers, Ulrike Lischetti, Julien Mena, Emanuela S. Milani, Michael Prummer, Jacobo Sarabia Del Castillo, Franziska Singer, Sujana Sivapatham, Nora C. Toussaint, Oliver Vilinovszki, Mattheus H. E. Wildschut, Tharshika Thavayogarajah, Disha Malani, The TumorProfiler Consortium, Rudolf Aebersold, Marina Bacac, Niko Beerenwinkel, Christian Beisel, Bernd Bodenmiller, Viola Heinzelmann-Schwarz, Viktor H. Koelzer, Mitchell P. Levesque, Holger Moch, Lucas Pelkmans, Gunnar Rätsch, Markus Tolnay, Andreas Wicki, Bernd Wollscheid, Markus G. Manz, Berend Snijder, Alexandre P. A. Theocharides
Publikováno v:
Nature Communications, Vol 15, Iss 1, Pp 1-18 (2024)
Abstract Deep single-cell multi-omic profiling offers a promising approach to understand and overcome drug resistance in relapsed or refractory (rr) acute myeloid leukemia (AML). Here, we combine single-cell ex vivo drug profiling (pharmacoscopy) wit
Externí odkaz:
https://doaj.org/article/d909919fc46044dd87b6ffb2a1e8a194
Building on recent work of Mattheus and Verstra\"ete, we establish a general connection between Ramsey numbers of the form $r(F,t)$ for $F$ a fixed graph and a variant of the Zarankiewicz problem asking for the maximum number of 1s in an $m$ by $n$ $
Externí odkaz:
http://arxiv.org/abs/2307.08694
Autor:
Mattheus, Sam, Verstraete, Jacques
For integers $s,t \geq 2$, the Ramsey numbers $r(s,t)$ denote the minimum $N$ such that every $N$-vertex graph contains either a clique of order $s$ or an independent set of order $t$. In this paper we prove \[ r(4,t) = \Omega\Bigl(\frac{t^3}{\log^4
Externí odkaz:
http://arxiv.org/abs/2306.04007