Zobrazeno 1 - 10
of 18
pro vyhledávání: '"A. Margareth Rosa Brusin"'
Autor:
Uiara Celine de Moura, Andrea Carena, Francesco Da Ros, Darko Zibar, A. Margareth Rosa Brusin
Publikováno v:
Journal of Lightwave Technology
Moura, U C D, Da Ros, F, Brusin, A M R, Carena, A & Zibar, D 2021, ' Experimental characterization of Raman amplifier optimization through inverse system design ', Journal of Lightwave Technology, vol. 39, no. 4, pp. 1162-1170 . https://doi.org/10.1109/JLT.2020.3036603
Moura, U C D, Da Ros, F, Brusin, A M R, Carena, A & Zibar, D 2021, ' Experimental characterization of Raman amplifier optimization through inverse system design ', Journal of Lightwave Technology, vol. 39, no. 4, pp. 1162-1170 . https://doi.org/10.1109/JLT.2020.3036603
Optical communication systems are always evolving to support the need for ever-increasing transmission rates. This demand is supported by the growth in complexity of communication systems which are moving towards ultra-wideband transmission and space
Publikováno v:
Brusin, A M R, Moura, U C D, Curri, V, Zibar, D & Carena, A 2020, ' Introducing Load Aware Neural Networks for Accurate Predictions of Raman Amplifiers ', Journal of Lightwave Technology, vol. 38, no. 23, pp. 6481-6491 . https://doi.org/10.1109/JLT.2020.3014810
Journal of Lightwave Technology
Journal of Lightwave Technology
An ultra-fast machine learning based method for accurate predictions of gain and amplified spontaneous emission (ASE) noise profiles of Raman amplifiers is introduced. It is an alternative to high-complexity and time-consuming standard approaches, wh
Publikováno v:
de Moura, U C, Zibar, D, Brusin, A M R, Carena, A & Da Ros, F 2022, ' Fiber-Agnostic Machine Learning-Based Raman Amplifier Models ', Journal of Lightwave Technology, vol. 41, no. 1, pp. 83-95 . https://doi.org/10.1109/JLT.2022.3210769
Machine learning techniques have been applied to solve many open and highly complex problems in optical communications. In particular, neural networks (NN) have proved to be effective in learning the complex mapping between pump powers and gain profi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6f4e18b40e15598e52e6e09b2e95c586
https://orbit.dtu.dk/en/publications/b37deb59-5967-4f84-8cb4-726a0d59e937
https://orbit.dtu.dk/en/publications/b37deb59-5967-4f84-8cb4-726a0d59e937
Autor:
Aleksandr Donodin, Uiara Celine de Moura, Ann Margareth Rosa Brusin, Egor Manuylovich, Vladislav Dvoyrin, Francesco Da Ros, Andrea Carena, Wladek Forysiak, Darko Zibar, Sergei K. Turitsyn
Publikováno v:
Journal of the European Optical Society-Rapid Publications. 19:4
Bismuth-doped fiber amplifiers offer an attractive solution for meeting continuously growing enormous demand on the bandwidth of modern communication systems. However, practical deployment of such amplifiers require massive development and optimizati
Autor:
Fabrizio Forghieri, Pierluigi Poggiolini, Andrea Carena, Mahdi Ranjbar Zefreh, Stefano Piciaccia, A. Margareth Rosa Brusin
Publikováno v:
ECOC
Autor:
Francesco Da Ros, Ann Margareth Rosa Brusin, Darko Zibar, Andrea Carena, Uiara Celine de Moura
Publikováno v:
Optics Letters
de Moura, U C, Rosa Brusin, A M, Carena, A, Zibar, D & da Ros, F 2021, ' Simultaneous gain profile design and noise figure prediction for Raman amplifiers using machine learning ', Optics Letters, vol. 46, no. 5, pp. 1157-1160 . https://doi.org/10.1364/OL.417243
de Moura, U C, Rosa Brusin, A M, Carena, A, Zibar, D & da Ros, F 2021, ' Simultaneous gain profile design and noise figure prediction for Raman amplifiers using machine learning ', Optics Letters, vol. 46, no. 5, pp. 1157-1160 . https://doi.org/10.1364/OL.417243
A machine learning framework predicting pump powers and noise figure profile for a target distributed Raman amplifier gain profile is experimentally demonstrated. We employ a single-layer neural network to learn the mapping from the gain profiles to
Autor:
Ann Margareth Rosa Brusin, Fabrizio Forghieri, Stefano Piciaccia, Andrea Carena, Pierluigi Poggiolini, Mahdi Ranjbar Zefreh
Publikováno v:
ECOC
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c77c9122c7c7c4797536a389f819c3d4
http://hdl.handle.net/11583/2947718
http://hdl.handle.net/11583/2947718
Autor:
de Moura, Uiara C., Zibar, Darko, Margareth Rosa Brusin, A., Carena, Andrea, Da Ros, Francesco
Publikováno v:
Journal of Lightwave Technology; January 2023, Vol. 41 Issue: 1 p83-95, 13p
Autor:
A. Margareth Rosa Brusin, Vittorio Curri, Uiara Celine de Moura, Andrea D'Amico, Andrea Carena, Darko Zibar
Publikováno v:
OFC
We introduce a load aware machine learning method for prediction of Raman gain profiles. It enables future network controllers to manage seamless upgrades toward multi-band optical line systems with dynamic loads.
Autor:
Darko Zibar, Uiara Celine de Moura, Andrea Carena, A. Margareth Rosa Brusin, Francesco Da Ros
Publikováno v:
OFC
de Moura, U C, Da Ros, F, Brusin, A M R, Carena, A & Zibar, D 2020, Experimental demonstration of arbitrary Raman gain-profile designs using machine learning . in Optical Fiber Communication Conference 2020 ., T4B.2, IEEE, Optical Fiber Communication Conference 2020, San Diego, California, United States, 08/03/2020 . https://doi.org/10.1364/OFC.2020.T4B.2
Optical Fiber Communication Conference (OFC) 2020
de Moura, U C, Da Ros, F, Brusin, A M R, Carena, A & Zibar, D 2020, Experimental demonstration of arbitrary Raman gain-profile designs using machine learning . in Optical Fiber Communication Conference 2020 ., T4B.2, IEEE, Optical Fiber Communication Conference 2020, San Diego, California, United States, 08/03/2020 . https://doi.org/10.1364/OFC.2020.T4B.2
Optical Fiber Communication Conference (OFC) 2020
A machine learning framework for Raman amplifier design is experimentally tested. Performance in terms of maximum error over the gain profile is investigated for various fiber types and lengths, demonstrating highly–accurate designs.