Zobrazeno 1 - 10
of 351
pro vyhledávání: '"A. Malinnikova"'
Hardy's uncertainty principle is a classical result in harmonic analysis, stating that a function in $L^2(\mathbb{R}^d)$ and its Fourier transform cannot both decay arbitrarily fast at infinity. In this paper, we extend this principle to the propagat
Externí odkaz:
http://arxiv.org/abs/2410.13818
Publikováno v:
Bull. Amer. Math. Soc. (N.S.) 58 (2021), no.3, 357--375
The Hardy uncertainty principle says that no function is better localized together with its Fourier transform than the Gaussian. The textbook proof of the result, as well as one of the original proofs by Hardy, refers to the Phragm\'en-Lindel\"of the
Externí odkaz:
http://arxiv.org/abs/2210.03369
Autor:
Decio, Stefano, Malinnikova, Eugenia
Let $\varphi_{\lambda}$ be an eigenfunction of the Laplace-Beltrami operator on a smooth compact Riemannian manifold $(M,g)$, i.e., $\Delta_g \varphi_{\lambda} + \lambda \varphi_{\lambda}=0$. We show that $\varphi_{\lambda}$ satisfies a local Bernste
Externí odkaz:
http://arxiv.org/abs/2208.10541
Autor:
Saniyat A. Magomedova, Saida K. Bilalova, Khatuna D. Peradze, Olga V. Isaeva, Vera S. Kichatova, Elena Y. Malinnikova, Liudmila Y. Ilchenko, Karen K. Kyuregyan, Vasiliy G. Akimkin, Mikhail I. Mikhailov
Publikováno v:
Alʹmanah Kliničeskoj Mediciny, Vol 51, Iss 4, Pp 227-235 (2023)
Rationale: The high prevalence of hepatitis D virus (HDV) infection in the Republic of Dagestan, significantly exceeding that in the European part of the Russian Federation, as well as the limited choice of therapeutic options, have led to the need t
Externí odkaz:
https://doaj.org/article/218ef8911d87430388c0e40874c18d8b
Let $\Omega$ be a bounded domain in $\mathbb{R}^n$ with $C^{1}$ boundary and let $u_\lambda$ be a Dirichlet Laplace eigenfunction in $\Omega$ with eigenvalue $\lambda$. We show that the $(n-1)$-dimensional Hausdorff measure of the zero set of $u_\lam
Externí odkaz:
http://arxiv.org/abs/2104.09012
Let $u_k$ be a solution of the Helmholtz equation with the wave number $k$, $\Delta u_k+k^2 u_k=0$, on a small ball in either $\mathbb{R}^n$, $\mathbb{S}^n$, or $\mathbb{H}^n$. For a fixed point $p$, we define $M_{u_k}(r)=\max_{d(x,p)\le r}|u_k(x)|.$
Externí odkaz:
http://arxiv.org/abs/2009.09225
Publikováno v:
J. Differential Geom. 126 (2024), no. 1, 49-63
Let $(M, g)$ be a closed Riemannian manifold, where g is $C^1$-smooth metric. Consider the sequence of eigenfunctions $u_k$ of the Laplace operator on M. Let $B$ be a ball on $M$. We prove a sharp estimate of the number of nodal domains of $u_k$ that
Externí odkaz:
http://arxiv.org/abs/2008.00677
Consider a solution $u$ to $\Delta u +Vu=0$ on $\mathbb{R}^2$, where $V$ is real-valued, measurable and $|V|\leq 1$. If $|u(x)| \leq \exp(-C |x| \log^{1/2}|x|)$, $|x|>2$, where $C$ is a sufficiently large absolute constant, then $u\equiv 0$.
Externí odkaz:
http://arxiv.org/abs/2007.07034
Autor:
V. T. Ivashkin, V. P. Chulanov, N. A. Mamonova, M. V. Maevskaya, M. S. Zharkova, I. N. Tikhonov, P. O. Bogomolov, E. V. Volchkova, A. S. Dmitriev, O. O. Znojko, E. A. Klimova, K. V. Kozlov, I. E. Kravchenko, E. Yu. Malinnikova, R. V. Maslennikov, M. I. Mikhailov, K. E. Novak, I. G. Nikitin, V. E. Syutkin, E. V. Esaulenko, A. A. Sheptulin, E. N. Shirokova, N. D. Yushchuk
Publikováno v:
Российский журнал гастроэнтерологии, гепатологии, колопроктологии, Vol 33, Iss 1, Pp 84-124 (2023)
Аim: diagnosis and treatment algorithms in the clinical recommendations intended for general practitioners, gastroenterologists, infectious disease specialists, hepatologists on the of chronic hepatitis C are presented.Summary. Chronic viral hepatit
Externí odkaz:
https://doaj.org/article/ddf0b4b1638842fa940763cca94357ee
This is a review of old and new results and methods related to the Yau conjecture on the zero set of Laplace eigenfunctions. The review accompanies two lectures given at the conference CDM 2018. We discuss the works of Donnelly and Fefferman includin
Externí odkaz:
http://arxiv.org/abs/1908.01639