Zobrazeno 1 - 10
of 2 548
pro vyhledávání: '"A. Maldague"'
Publikováno v:
Journal of Food Protection, Vol 87, Iss 12, Pp 100392- (2024)
The uncertainties surrounding the microbiological risks of an extended exsanguination-to-evisceration interval have limited the implementation of on-farm slaughter in Europe. On-farm slaughter is increasingly advocated by farmers, consumers, and poli
Externí odkaz:
https://doaj.org/article/567b8cc305e846aebca5c784b3570914
Autor:
Maldague, Dominique, Oh, Changkeun
This paper proves sharp small cap decoupling estimates for the moment curve $\mathcal{M}^n=\{(t,t^2,\ldots,t^n):0\leq t\leq 1\}$ in the remaining small cap parameter ranges for $\mathbb{R}^2$ and $\mathbb{R}^3$.
Comment: 20 pages
Comment: 20 pages
Externí odkaz:
http://arxiv.org/abs/2411.18016
We identify a new way to divide the $\delta$-neighborhood of surfaces $\mathcal{M}\subset\mathbb{R}^3$ into a finitely-overlapping collection of rectangular boxes $S$. We obtain a sharp $(l^2,L^p)$ decoupling estimate using this decomposition, for th
Externí odkaz:
http://arxiv.org/abs/2403.18431
The matrix $p \rightarrow q$ norm is a fundamental quantity appearing in a variety of areas of mathematics. This quantity is known to be efficiently computable in only a few special cases. The best known algorithms for approximately computing this qu
Externí odkaz:
http://arxiv.org/abs/2311.07677
Autor:
Guth, Larry, Maldague, Dominique
We use high-low frequency methods developed in the context of decoupling to prove sharp (up to $C_\epsilon R^\epsilon$) square function estimates for the moment curve $(t,t^2,\ldots,t^n)$ in $\mathbb{R}^n$. Our inductive scheme incorporates sharp squ
Externí odkaz:
http://arxiv.org/abs/2309.13759
We extend the small cap decoupling program established by Demeter, Guth, and Want to paraboloids in $\mathbb{R}^n$ for some range of $p$.
Comment: 17 pages, small corrections following referee report
Comment: 17 pages, small corrections following referee report
Externí odkaz:
http://arxiv.org/abs/2307.06445
Autor:
Xin Wang, Guimin Jiang, Jue Hu, Stefano Sfarra, Miranda Mostacci, Dimitrios Kouis, Dazhi Yang, Henrique Fernandes, Nicolas P. Avdelidis, Xavier Maldague, Yonggang Gai, Hai Zhang
Publikováno v:
Heritage Science, Vol 12, Iss 1, Pp 1-15 (2024)
Abstract In recent years, the preservation and conservation of ancient cultural heritage necessitate the advancement of sophisticated non-destructive testing methodologies to minimize potential damage to artworks. Therefore, this study aims to develo
Externí odkaz:
https://doaj.org/article/d5d2e07fa79a4eaea7bea362a433acec
We prove that a maximally modulated singular oscillatory integral operator along a hypersurface defined by $(y,Q(y))\subseteq \mathbb{R}^{n+1}$, for an arbitrary non-degenerate quadratic form $Q$, admits an a priori bound on $L^p$ for all $1
Externí odkaz:
http://arxiv.org/abs/2211.15865
Autor:
Maldague, Dominique
We prove a sharp (up to $C_\epsilon R^\epsilon$) $L^7$ square function estimate for the moment curve in $\mathbb{R}^3$.
Externí odkaz:
http://arxiv.org/abs/2210.17436
Let $\gamma:[0,1]\rightarrow \mathbb{S}^{2}$ be a non-degenerate curve in $\mathbb{R}^3$, that is to say, $\det\big(\gamma(\theta),\gamma'(\theta),\gamma''(\theta)\big)\neq 0$. For each $\theta\in[0,1]$, let $l_\theta=\{t\gamma(\theta):t\in\mathbb{R}
Externí odkaz:
http://arxiv.org/abs/2209.15152