Zobrazeno 1 - 10
of 60 305
pro vyhledávání: '"A. Mahoney"'
As performance gains through scaling data and/or model size experience diminishing returns, it is becoming increasingly popular to turn to ensembling, where the predictions of multiple models are combined to improve accuracy. In this paper, we provid
Externí odkaz:
http://arxiv.org/abs/2411.00328
Recent work on pruning large language models (LLMs) has shown that one can eliminate a large number of parameters without compromising performance, making pruning a promising strategy to reduce LLM model size. Existing LLM pruning strategies typicall
Externí odkaz:
http://arxiv.org/abs/2410.10912
Autor:
Lim, Soon Hoe, Wang, Yijin, Yu, Annan, Hart, Emma, Mahoney, Michael W., Li, Xiaoye S., Erichson, N. Benjamin
Flow matching has recently emerged as a powerful paradigm for generative modeling and has been extended to probabilistic time series forecasting in latent spaces. However, the impact of the specific choice of probability path model on forecasting per
Externí odkaz:
http://arxiv.org/abs/2410.03229
Autor:
Sakarvadia, Mansi, Ajith, Aswathy, Khan, Arham, Hudson, Nathaniel, Geniesse, Caleb, Chard, Kyle, Yang, Yaoqing, Foster, Ian, Mahoney, Michael W.
Language models (LMs) can "memorize" information, i.e., encode training data in their weights in such a way that inference-time queries can lead to verbatim regurgitation of that data. This ability to extract training data can be problematic, for exa
Externí odkaz:
http://arxiv.org/abs/2410.02159
State space models (SSMs) leverage linear, time-invariant (LTI) systems to effectively learn sequences with long-range dependencies. By analyzing the transfer functions of LTI systems, we find that SSMs exhibit an implicit bias toward capturing low-f
Externí odkaz:
http://arxiv.org/abs/2410.02035
In this work, we consider solving optimization problems with a stochastic objective and deterministic equality constraints. We propose a Trust-Region Sequential Quadratic Programming method to find both first- and second-order stationary points. Our
Externí odkaz:
http://arxiv.org/abs/2409.15734
Autor:
Dcruz, Julian Gerald, Mahoney, Sam, Chua, Jia Yun, Soukhabandith, Adoundeth, Mugabe, John, Guo, Weisi, Arana-Catania, Miguel
Autonomous operations of robots in unknown environments are challenging due to the lack of knowledge of the dynamics of the interactions, such as the objects' movability. This work introduces a novel Causal Reinforcement Learning approach to enhancin
Externí odkaz:
http://arxiv.org/abs/2409.13423
Consensus planning is a method for coordinating decision making across complex systems and organizations, including complex supply chain optimization pipelines. It arises when large interdependent distributed agents (systems) share common resources a
Externí odkaz:
http://arxiv.org/abs/2408.16462
Autor:
Adderley, P. A., Ahmed, S., Allison, T., Bachimanchi, R., Baggett, K., BastaniNejad, M., Bevins, B., Bevins, M., Bickley, M., Bodenstein, R. M., Bogacz, S. A., Bruker, M., Burrill, A., Cardman, L., Creel, J., Chao, Y. -C., Cheng, G., Ciovati, G., Chattopadhyay, S., Clark, J., Clemens, W. A., Croke, G., Daly, E., Davis, G. K., Delayen, J., De Silva, S. U., Dickson, R., Diaz, M., Drury, M., Doolittle, L., Douglas, D., Feldl, E., Fischer, J., Freyberger, A., Ganni, V., Geng, R. L., Ginsburg, C., Gomez, J., Grames, J., Gubeli, J., Guo, J., Hannon, F., Hansknecht, J., Harwood, L., Henry, J., Hernandez-Garcia, C., Higgins, S., Higinbotham, D., Hofler, A. S., Hiatt, T., Hogan, J., Hovater, C., Hutton, A., Jones, C., Jordan, K., Joyce, M., Kazimi, R., Keesee, M., Kelley, M. J., Keppel, C., Kimber, A., King, L., Kjeldsen, P., Kneisel, P., Koval, J., Krafft, G. A., Lahti, G., Larrieu, T., Lauze, R., Leemann, C., Legg, R., Li, R., Lin, F., Machie, D., Mammosser, J., Macha, K., Mahoney, K., Marhauser, F., Mastracci, B., Matalevich, J., McCarter, J., McCaughan, M., Merminga, L., Michaud, R., Morozov, V., Mounts, C., Musson, J., Nelson, R., Oren, W., Overton, R. B., Palacios-Serrano, G., Park, H. -K., Phillips, L., Philip, S., Pilat, F., Plawski, T., Poelker, M., Powers, P., Powers, T., Preble, J., Reilly, T., Rimmer, R., Reece, C., Robertson, H., Roblin, Y., Rode, C., Satogata, T., Seidman, D. J., Seryi, A., Shabalina, A., Shin, I., Slominski, R., Slominski, C., Spata, M., Spell, D., Spradlin, J., Stirbet, M., Stutzman, M. L., Suhring, S., Surles-Law, K., Suleiman, R., Tennant, C., Tian, H., Turner, D., Tiefenback, M., Trofimova, O., Valente, A. -M., Wang, H., Wang, Y., White, K., Whitlatch, C., Whitlatch, T., Wiseman, M., Wissman, M. J., Wu, G., Yang, S., Yunn, B., Zhang, S., Zhang, Y.
Publikováno v:
Phys. Rev. Accel. Beams 27 (2024) 084802
This review paper describes the energy-upgraded CEBAF accelerator. This superconducting linac has achieved 12 GeV beam energy by adding 11 new high-performance cryomodules containing eighty-eight superconducting cavities that have operated CW at an a
Externí odkaz:
http://arxiv.org/abs/2408.16880
Autor:
Ren, Pu, Nakata, Rie, Lacour, Maxime, Naiman, Ilan, Nakata, Nori, Song, Jialin, Bi, Zhengfa, Malik, Osman Asif, Morozov, Dmitriy, Azencot, Omri, Erichson, N. Benjamin, Mahoney, Michael W.
Predicting high-fidelity ground motions for future earthquakes is crucial for seismic hazard assessment and infrastructure resilience. Conventional empirical simulations suffer from sparse sensor distribution and geographically localized earthquake l
Externí odkaz:
http://arxiv.org/abs/2407.15089