Zobrazeno 1 - 10
of 14 199
pro vyhledávání: '"A. Mahjoub"'
Autor:
Aryan, FNU, Stepputtis, Simon, Bhagat, Sarthak, Campbell, Joseph, Lee, Kwonjoon, Mahjoub, Hossein Nourkhiz, Sycara, Katia
Scene understanding is a fundamental capability needed in many domains, ranging from question-answering to robotics. Unlike recent end-to-end approaches that must explicitly learn varying compositions of the same scene, our method reasons over their
Externí odkaz:
http://arxiv.org/abs/2410.22626
Autor:
Daniel, Jemma, de Kock, Ruan, Nessir, Louay Ben, Abramowitz, Sasha, Mahjoub, Omayma, Khlifi, Wiem, Formanek, Claude, Pretorius, Arnu
The Transformer model has demonstrated success across a wide range of domains, including in Multi-Agent Reinforcement Learning (MARL) where the Multi-Agent Transformer (MAT) has emerged as a leading algorithm in the field. However, a significant draw
Externí odkaz:
http://arxiv.org/abs/2410.19382
Autor:
Mahjoub, Omayma, Abramowitz, Sasha, de Kock, Ruan, Khlifi, Wiem, Toit, Simon du, Daniel, Jemma, Nessir, Louay Ben, Beyers, Louise, Formanek, Claude, Clark, Liam, Pretorius, Arnu
As the field of multi-agent reinforcement learning (MARL) progresses towards larger and more complex environments, achieving strong performance while maintaining memory efficiency and scalability to many agents becomes increasingly important. Althoug
Externí odkaz:
http://arxiv.org/abs/2410.01706
Autor:
Li, Huao, Mahjoub, Hossein Nourkhiz, Chalaki, Behdad, Tadiparthi, Vaishnav, Lee, Kwonjoon, Moradi-Pari, Ehsan, Lewis, Charles Michael, Sycara, Katia P
Multi-Agent Reinforcement Learning (MARL) methods have shown promise in enabling agents to learn a shared communication protocol from scratch and accomplish challenging team tasks. However, the learned language is usually not interpretable to humans
Externí odkaz:
http://arxiv.org/abs/2409.17348
Autor:
Sennary, Mohamed, Shah, Jalil, Yuan, Mingrui, Mahjoub, Ahmed, Pervak, Vladimir, Golubev, Nikolay, Hassan, Mohammed
In the last decade, advancements in attosecond spectroscopy have allowed us to study electron motion dynamics in condensed matter. The access to these electron dynamics and, consequently, its control by an ultrafast light field paves the way for esta
Externí odkaz:
http://arxiv.org/abs/2407.16810
Autor:
Aamir, M., Acar, B., Adamov, G., Adams, T., Adloff, C., Afanasiev, S., Agrawal, C., Ahmad, A., Ahmed, H. A., Akbar, S., Akchurin, N., Akgul, B., Akgun, B., Akpinar, R. O., Aktas, E., AlKadhim, A., Alexakhin, V., Alimena, J., Alison, J., Alpana, A., Alshehri, W., Dominguez, P. Alvarez, Alyari, M., Amendola, C., Amir, R. B., Andersen, S. B., Andreev, Y., Antoszczuk, P. D., Aras, U., Ardila, L., Aspell, P., Avila, M., Awad, I., Aydilek, O., Azimi, Z., Pretel, A. Aznar, Bach, O. A., Bainbridge, R., Bakshi, A., Bam, B., Banerjee, S., Barney, D., Bayraktar, O., Beaudette, F., Beaujean, F., Becheva, E., Behera, P. K., Belloni, A., Bergauer, T., Besancon, M., Bylund, O. Bessidskaia, Bhatt, L., Bhowmil, D., Blekman, F., Blinov, P., Bloch, P., Bodek, A., Boger, a., Bonnemaison, A., Bouyjou, F., Brennan, L., Brondolin, E., Brusamolino, A., Bubanja, I., Perraguin, A. Buchot, Bunin, P., Misura, A. Burazin, Butler-nalin, A., Cakir, A., Callier, S., Campbell, S., Canderan, K., Cankocak, K., Cappati, A., Caregari, S., Carron, S., Carty, C., Cauchois, A., Ceard, L., Cerci, S., Chang, P. J., Chatterjee, R. M., Chatterjee, S., Chattopadhyay, P., Chatzistavrou, T., Chaudhary, M. S., Chauhan, A., Chen, J. A., Chen, J., Chen, Y., Cheng, K., Cheung, H., Chhikara, J., Chiron, A., Chiusi, M., Chokheli, D., Chudasama, R., Clement, E., Mendez, S. Coco, Coko, D., Coskun, K., Couderc, F., Crossman, B., Cui, Z., Cuisset, T., Cummings, G., Curtis, E. M., D'Alfonso, M., D-hler-ball, J., Dadazhanova, O., Damgov, J., Das, I., DasGupta, S., Dauncey, P., Mendes, A. David Tinoco, Davies, G., Davignon, O., DeLa, P. deBarbaroC., DeSilva, M., DeWit, A., Debbins, P., Defranchis, M. M., Delagnes, E., Devouge, P., Dewangan, C., DiGuglielmo, G., Diehl, L., Dilsiz, K., Dincer, G. G., Dittmann, J., Dragicevic, M., Du, D., Dubinchik, B., Dugad, S., Dulucq, F., Dumanoglu, I., Duran, B., Dutta, S., Dutta, V., Dychkant, A., Dünser, M., Edberg, T., Ehle, I. T., Berni, A. El, Elias, F., Eno, S. C., Erdogan, E. N., Erkmen, B., Ershov, Y., Ertorer, E. Y., Extier, S., Eychenne, L., Fedar, Y. E., Fedi, G., De Almeida, J. P. Figueiredo De De Sá Sousa, Alves, B. A. Fontana Santos Santos, Frahm, E., Francis, K., Freeman, J., French, T., Gaede, F., Gandhi, P. K., Ganjour, S., Garcia-Bellido, A., Gastaldi, F., Gazi, L., Gecse, Z., Gerwig, H., Gevin, O., Ghosh, S., Gill, K., Gleyzer, S., Godinovic, N., Goek, M., Goettlicher, P., Goff, R., Golunov, A., Gonultas, B., Martínez, J. D. González, Gorbounov, N., Gouskos, L., Gray, A., Gray, L., Grieco, C., Groenroos, S., Groner, D., Gruber, A., Grummer, A., Grönroos, S., Guilloux, F., Guler, Y., Gungordu, A. D., Guo, J., Guo, K., Guler, E. Gurpinar, Gutti, H. K., Guvenli, A. A., Gülmez, E., Hacisahinoglu, B., Halkin, Y., Machado, G. Hamilton Ilha, Hare, H. S., Hatakeyama, K., Heering, A. H., Hegde, V., Heintz, U., Hinton, N., Hinzmann, A., Hirschauer, J., Hitlin, D., Hos, İ., Hou, B., Hou, X., Howard, A., Howe, C., Hsieh, H., Hsu, T., Hua, H., Hummer, F., Imran, M., Incandela, J., Iren, E., Isildak, B., Jackson, P. S., Jackson, W. J., Jain, S., Jana, P., Jaroslavceva, J., Jena, S., Jige, A., Jordano, P. P., Joshi, U., Kaadze, K., Kafizov, A., Kalipoliti, L., Tharayil, A. Kallil, Kaluzinska, O., Kamble, S., Kaminskiy, A., Kanemura, M., Kanso, H., Kao, Y., Kapic, A., Kapsiak, C., Karjavine, V., Karmakar, S., Karneyeu, A., Kaya, M., Topaksu, A. Kayis, Kaynak, B., Kazhykarim, Y., Khan, F. A., Khudiakov, A., Kieseler, J., Kim, R. S., Klijnsma, T., Kloiber, E. G., Klute, M., Kocak, Z., Kodali, K. R., Koetz, K., Kolberg, T., Kolcu, O. B., Komaragiri, J. R., Komm, M., Kopsalis, I., Krause, H. A., Krawczyk, M. A., Vinayakam, T. R. Krishnaswamy, Kristiansen, K., Kristic, A., Krohn, M., Kronheim, B., Krüger, K., Kudtarkar, C., Kulis, S., Kumar, M., Kumar, N., Kumar, S., Verma, R. Kumar, Kunori, S., Kunts, A., Kuo, C., Kurenkov, A., Kuryatkov, V., Kyre, S., Ladenson, J., Lamichhane, K., Landsberg, G., Langford, J., Laudrain, A., Laughlin, R., Lawhorn, J., Dortz, O. Le, Lee, S. W., Lektauers, A., Lelas, D., Leon, M., Levchuk, L., Li, A. J., Li, J., Li, Y., Liang, Z., Liao, H., Lin, K., Lin, W., Lin, Z., Lincoln, D., Linssen, L., Litomin, A., Liu, G., Liu, Y., Lobanov, A., Lohezic, V., Loiseau, T., Lu, C., Lu, R., Lu, S. Y., Lukens, P., Mackenzie, M., Magnan, A., Magniette, F., Mahjoub, A., Mahon, D., Majumder, G., Makarenko, V., Malakhov, A., Malgeri, L., Mallios, S., Mandloi, C., Mankel, A., Mannelli, M., Mans, J., Mantilla, C., Martinez, G., Massa, C., Masterson, P., Matthewman, M., Matveev, V., Mayekar, S., Mazlov, I., Mehta, A., Mestvirishvili, A., Miao, Y., Milella, G., Mirza, I. R., Mitra, P., Moccia, S., Mohanty, G. B., Monti, F., Moortgat, F., Murthy, S., Music, J., Musienko, Y., Nabili, S., Nayak, S., Nelson, J. W., Nema, A., Neutelings, I., Niedziela, J., Nikitenko, A., Noonan, D., Noy, M., Nurdan, K., Obraztsov, S., Ochando, C., Ogul, H., Olsson, J., Onel, Y., Ozkorucuklu, S., Paganis, E., Palit, P., Pan, R., Pandey, S., Pantaleo, F., Papageorgakis, C., Paramesvaran, S., Paranjpe, M. M., Parolia, S., Parsons, A. G., Parygin, P., Paulini, M., Paus, C., Peñaló, K., Pedro, K., Pekic, V., Peltola, T., Peng, B., Perego, A., Perini, D., Petrilli, A., Pham, H., Pierre-Emile, T., Podem, S. K., Popov, V., Portales, L., Potok, O., Pradeep, P. B., Pramanik, R., Prosper, H., Prvan, M., Qasim, S. R., Qu, H., Quast, T., Trivino, A. Quiroga, Rabour, L., Raicevic, N., Rajpoot, H., Rao, M. A., Rapacz, K., Redjeb, W., Reinecke, M., Revering, M., Roberts, A., Rohlf, J., Rosado, P., Rose, A., Rothman, S., Rout, P. K., Rovere, M., Rumerio, P., Rusack, R., Rygaard, L., Ryjov, V., Sadivnycha, S., Sahin, M. Ö., Sakarya, U., Salerno, R., Saradhy, R., Saraf, M., Sarbandi, K., Sarkisla, M. A., Satyshev, I., Saud, N., Sauvan, J., Schindler, G., Schmidt, A., Schmidt, I., Schmitt, M. H., Sculac, A., Sculac, T., Sedelnikov, A., Seez, C., Sefkow, F., Selivanova, D., Selvaggi, M., Sergeychik, V., Sert, H., Shahid, M., Sharma, P., Sharma, R., Sharma, S., Shelake, M., Shenai, A., Shih, C. W., Shinde, R., Shmygol, D., Shukla, R., Sicking, E., Silva, P., Simsek, C., Simsek, E., Sirasva, B. K., Sirois, Y., Song, S., Song, Y., Soudais, G., Sriram, S., StJacques, R. R., StahlLeiton, A. G., Steen, A., Stein, J., Strait, J., Strobbe, N., Su, X., Sukhov, E., Suleiman, A., Cerci, D. Sunar, Suryadevara, P., Swain, K., Syal, C., Tali, B., Tanay, K., Tang, W., Tanvir, A., Tao, J., Tarabini, A., Tatli, T., Taylor, R., Taysi, Z. C., Teafoe, G., Tee, C. Z., Terrill, W., Thienpont, D., Thomas, R., Titov, M., Todd, C., Todd, E., Toms, M., Tosun, A., Troska, J., Tsai, L., Tsamalaidze, Z., Tsionou, D., Tsipolitis, G., Tsirigoti, M., Tu, R., Polat, S. N. Tural, Undleeb, S., Usai, E., Uslan, E., Ustinov, V., Vernazza, E., Viahin, O., Viazlo, O., Vichoudis, P., Vijay, A., Virdee, T., Voirin, E., Vojinovic, M., Voytishin, N., Vámi, T. Á., Wade, A., Walter, D., Wang, C., Wang, F., Wang, J., Wang, K., Wang, X., Wang, Y., Wang, Z., Wanlin, E., Wayne, M., Wetzel, J., Whitbeck, A., Wickwire, R., Wilmot, D., Wilson, J., Wu, H., Xiao, M., Yang, J., Yazici, B., Ye, Y., Yetkin, T., Yi, R., Yohay, R., Yu, T., Yuan, C., Yuan, X., Yuksel, O., YushmanoV, I., Yusuff, I., Zabi, A., Zareckis, D., Zarubin, A., Zehetner, P., Zghiche, A., Zhang, C., Zhang, D., Zhang, H., Zhang, J., Zhang, Z., Zhao, X., Zhong, J., Zhou, Y., Zorbilmez, Ç.
A novel method to reconstruct the energy of hadronic showers in the CMS High Granularity Calorimeter (HGCAL) is presented. The HGCAL is a sampling calorimeter with very fine transverse and longitudinal granularity. The active media are silicon sensor
Externí odkaz:
http://arxiv.org/abs/2406.11937
Autor:
Holley, Dustin, Dsa, Jovin, Mahjoub, Hossein Nourkhiz, Ali, Gibran, Naes, Tyler, Moradi-Pari, Ehsan, Kallepalli, Pawan Sai
Publikováno v:
2024 IEEE Intelligent Vehicles Symposium (IV)
Enhancing simulation environments to replicate real-world driver behavior is essential for developing Autonomous Vehicle technology. While some previous works have studied the yielding reaction of lag vehicles in response to a merging car at highway
Externí odkaz:
http://arxiv.org/abs/2404.09851
Autor:
Khlifi, Wiem, Singh, Siddarth, Mahjoub, Omayma, de Kock, Ruan, Vall, Abidine, Gorsane, Rihab, Pretorius, Arnu
Cooperative multi-agent reinforcement learning (MARL) has made substantial strides in addressing the distributed decision-making challenges. However, as multi-agent systems grow in complexity, gaining a comprehensive understanding of their behaviour
Externí odkaz:
http://arxiv.org/abs/2312.08468
Autor:
Mahjoub, Omayma, de Kock, Ruan, Singh, Siddarth, Khlifi, Wiem, Vall, Abidine, Tessera, Kale-ab, Pretorius, Arnu
Measuring the contribution of individual agents is challenging in cooperative multi-agent reinforcement learning (MARL). In cooperative MARL, team performance is typically inferred from a single shared global reward. Arguably, among the best current
Externí odkaz:
http://arxiv.org/abs/2312.08466
Autor:
Singh, Siddarth, Mahjoub, Omayma, de Kock, Ruan, Khlifi, Wiem, Vall, Abidine, Tessera, Kale-ab, Pretorius, Arnu
Establishing sound experimental standards and rigour is important in any growing field of research. Deep Multi-Agent Reinforcement Learning (MARL) is one such nascent field. Although exciting progress has been made, MARL has recently come under scrut
Externí odkaz:
http://arxiv.org/abs/2312.08463