Zobrazeno 1 - 7
of 7
pro vyhledávání: '"A. M. Shahoot"'
Publikováno v:
Advances in Mathematical Physics, Vol 2018 (2018)
We apply the generalized projective Riccati equations method with the aid of Maple software to construct many new soliton and periodic solutions with parameters for two higher-order nonlinear partial differential equations (PDEs), namely, the nonline
Externí odkaz:
https://doaj.org/article/b30e0834cc084946b6286ccad6e22b48
Autor:
Ayad M. Shahoot, Khaled A. E. Alurrfi, Mohamed O. M. Elmrid, Ali M. Almsiri, Abdullah M. H. Arwiniya
Publikováno v:
Journal of Taibah University for Science, Vol 13, Iss 1, Pp 63-70 (2019)
In this paper, we apply the (G′/G)-expansion method based on three auxiliary equations, namely, the generalized Riccati equation $ G^{\prime}(\xi ) = r + pG(\xi ) + q{G^2}(\xi ) $ , the Jacobi elliptic equation $ {({G^{\prime}(\xi )} )^2} = R + Q{G
Externí odkaz:
https://doaj.org/article/dcb5c37898f14e78877e220c452f7676
Publikováno v:
Ricerche di Matematica.
In this article, we propose a new method to construct many new exact solutions with parameters for the generalized KdV–mKdV (GKdV–mKdV) equation with higher-order nonlinear terms. The proposed method is a generalization of the well-known $$\left(
Autor:
Abdullah M. H. Arwiniya, Mohamed O. M. Elmrid, Ali M. Almsiri, Khaled A. E. Alurrfi, Ayad M. Shahoot
Publikováno v:
Journal of Taibah University for Science, Vol 13, Iss 1, Pp 63-70 (2019)
In this paper, we apply the (G′/G)-expansion method based on three auxiliary equations, namely, the generalized Riccati equation $ G^{\prime}(\xi ) = r + pG(\xi ) + q{G^2}(\xi ) $ , the Jacobi elliptic equation $ {({G^{\prime}(\xi )} )^2} = R + Q{G
Autor:
Khaled A. E. Alurrfi, Ayad M. Shahoot, Mohamed O. M. Elmrid, Ali M. Almsiri, Abdullah M. H. Arwiniya
Publikováno v:
EPH - International Journal of Applied Science. 1:30-40
In this paper, we apply the (G′/G)-expansion method based on three auxiliary equations namely, the generalized Riccati equation, the Jacobi elliptic equation and the second order linear ordinary differential equation to find many new exact solution
Publikováno v:
Optical and Quantum Electronics. 50
In this article, we apply the two variable $$\left( \frac{G^{\prime }}{G}, \frac{1}{G}\right)$$ -expansion method with the aid of symbolic computation to construct many new exact solutions for two higher-order nonlinear partial differential equatuion
Publikováno v:
Advances in Mathematical Physics, Vol 2018 (2018)
We apply the generalized projective Riccati equations method with the aid of Maple software to construct many new soliton and periodic solutions with parameters for two higher-order nonlinear partial differential equations (PDEs), namely, the nonline