Zobrazeno 1 - 10
of 13
pro vyhledávání: '"A. M. Márquez-Durán"'
Autor:
T. Caraballo, A. M. Márquez-Durán
Publikováno v:
AIMS Mathematics, Vol 5, Iss 6, Pp 5470-5494 (2020)
In this paper we consider a non-autonomous Navier-Stokes-Voigt model including a variety of delay terms in a unified formulation. Firstly, we prove the existence and uniqueness of solutions by using a Galerkin scheme. Next, we prove the existence and
Externí odkaz:
https://doaj.org/article/3a4c88be835c424abe90cf67a307d8ac
Publikováno v:
idUS: Depósito de Investigación de la Universidad de Sevilla
Universidad de Sevilla (US)
AIMS Mathematics, Vol 5, Iss 6, Pp 5470-5494 (2020)
idUS. Depósito de Investigación de la Universidad de Sevilla
instname
Universidad de Sevilla (US)
AIMS Mathematics, Vol 5, Iss 6, Pp 5470-5494 (2020)
idUS. Depósito de Investigación de la Universidad de Sevilla
instname
In this paper we consider a non-autonomous Navier-Stokes-Voigt model including a variety of delay terms in a unified formulation. Firstly, we prove the existence and uniqueness of solutions by using a Galerkin scheme. Next, we prove the existence and
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e2f6dc06e883bacea20518d100c2e1b2
Publikováno v:
Discrete & Continuous Dynamical Systems - B. 22:1817-1833
Our aim in this work is the study of the existence and uniqueness of solutions for a non-classical and non-autonomous diffusion equation containing infinite delay terms. We also analyze the asymptotic behaviour of the system in the pullback sense and
Publikováno v:
Nonlinear Analysis: Theory, Methods & Applications. 79:68-79
Existence, uniqueness, and continuity properties of solutions for a globally modified version of Navier–Stokes equations with finite delay terms within a locally Lipschitz operator are established. Moreover, we also analyze the stationary problem,
Autor:
A. M. Márquez–Durán, Tomás Caraballo
Publikováno v:
Dynamics of Partial Differential Equations. 10:267-281
Publikováno v:
Springer Proceedings in Mathematics & Statistics ISBN: 9783319328553
We first study the well-posedness of a nonclassical and nonautonomous diffusion equation containing unbounded delays. Then, we prove the existence and uniqueness of local solutions, and finally we prove the global in time existence of solutions as we
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6b0f5e946355b80bacffbddff11bb745
https://doi.org/10.1007/978-3-319-32857-7_36
https://doi.org/10.1007/978-3-319-32857-7_36
Publikováno v:
Discrete & Continuous Dynamical Systems - B. 14:655-673
Existence and uniqueness of solution for a globally modified version of Navier-Stokes equations containing infinite delay terms are established. Moreover, we also analyze the stationary problem and, under suitable additional conditions, we obtain glo
Publikováno v:
Journal of Mathematical Analysis and Applications. 340:410-423
We prove the existence and exponential stability of the stationary solutions for a three-dimensional α-Navier–Stokes model with delays. Instead of working directly with the model, we establish the results for a general abstract delay model, and th
Publikováno v:
Applied Mathematics and Optimization. 53:141-161
The long-time behaviour of a stochastic 3D LANS-α model on a bounded domain is analysed. First, we reformulate the model as an abstract problem. Next, we establish sufficient conditions ensuring the existence of stationary (steady state) solutions o
Publikováno v:
Stochastics and Dynamics. :189-200
Existence and uniqueness of solutions for a stochastic version of the 3D-Lagrangian averaged Navier–Stokes (LANS-α) equation in a bounded domain and containing some hereditary characteristics are proved.