Zobrazeno 1 - 10
of 478
pro vyhledávání: '"A. Lladser"'
Autor:
T. Koning, F. Cordova, G. Aguilar, J. Sarmiento, G. A. Mardones, M. Boric, M. Varas-Godoy, A. Lladser, W. N. Duran, P. Ehrenfeld, F. A. Sanchez
Publikováno v:
Biological Research, Vol 56, Iss 1, Pp 1-16 (2023)
Abstract Background Nitric oxide is produced by different nitric oxide synthases isoforms. NO activates two signaling pathways, one dependent on soluble guanylate cyclase and protein kinase G, and other where NO post-translationally modifies proteins
Externí odkaz:
https://doaj.org/article/d6708b8746ff4864ba70e7f225dd9c00
Autor:
Svihla, Sean S., Lladser, Manuel E.
Consider a tree $T=(V,E)$ with root $\circ$ and edge length function $\ell:E\to\mathbb{R}_+$. The phylogenetic covariance matrix of $T$ is the matrix $C$ with rows and columns indexed by $L$, the leaf set of $T$, with entries $C(i,j):=\sum_{e\in[i\we
Externí odkaz:
http://arxiv.org/abs/2405.17847
A subset of points in a metric space is said to resolve it if each point in the space is uniquely characterized by its distance to each point in the subset. In particular, resolving sets can be used to represent points in abstract metric spaces as Eu
Externí odkaz:
http://arxiv.org/abs/2405.11424
Beginning with Witkowski et al. [2022], recent work on forecasting competitions has addressed incentive problems with the common winner-take-all mechanism. Frongillo et al. [2021] propose a competition mechanism based on follow-the-regularized-leader
Externí odkaz:
http://arxiv.org/abs/2303.13793
Autor:
Gorman, Evan D., Lladser, Manuel E.
Ultrametric matrices have a rich structure that is not apparent from their definition. Notably, the subclass of strictly ultrametric matrices are covariance matrices of certain weighted rooted binary trees. In applications, these matrices can be larg
Externí odkaz:
http://arxiv.org/abs/2208.09927
Autor:
Bustos, Galdo, Ahumada-Castro, Ulises, Silva-Pavez, Eduardo, Huerta, Hernán, Puebla, Andrea, Quezada, Camila, Morgado-Cáceres, Pablo, Casanova-Canelo, César, Smith-Cortinez, Natalia, Podunavac, Maša, Oyarce, Cesar, Lladser, Alvaro, Farias, Paula, Lovy, Alenka, Molgó, Jordi, Torres, Vicente A., Zakarian, Armen, Cárdenas, J. César
Publikováno v:
In BBA - Molecular Basis of Disease January 2025 1871(1)
Autor:
Ruth, Perrin E., Lladser, Manuel E.
We introduce the notion of Levenshtein graphs, an analog to Hamming graphs but using the edit distance instead of the Hamming distance; in particular, Levenshtein graphs allow for underlying strings (nodes) of different lengths. We characterize vario
Externí odkaz:
http://arxiv.org/abs/2107.06951
A graph $G=(V,E)$ with geodesic distance $d(\cdot,\cdot)$ is said to be resolved by a non-empty subset $R$ of its vertices when, for all vertices $u$ and $v$, if $d(u,r)=d(v,r)$ for each $r\in R$, then $u=v$. The metric dimension of $G$ is the cardin
Externí odkaz:
http://arxiv.org/abs/2106.14314
The metric dimension of a graph is the smallest number of nodes required to identify all other nodes based on shortest path distances uniquely. Applications of metric dimension include discovering the source of a spread in a network, canonically labe
Externí odkaz:
http://arxiv.org/abs/2104.07201
Autor:
Gorman, Evan D.1 (AUTHOR), Lladser, Manuel E.1 (AUTHOR) manuel.lladser@colorado.edu
Publikováno v:
PLoS Computational Biology. 5/20/2024, Vol. 20 Issue 5, p1-32. 32p.