Zobrazeno 1 - 10
of 6 080
pro vyhledávání: '"A. Letcher"'
Publikováno v:
Quantum 8, 1484 (2024)
The training of a parameterized model largely depends on the landscape of the underlying loss function. In particular, vanishing gradients are a central bottleneck in the scalability of variational quantum algorithms (VQAs), and are known to arise in
Externí odkaz:
http://arxiv.org/abs/2309.12681
Autor:
Fabiana Giglio, Carmen Scieuzo, Sofia Ouazri, Valentina Pucciarelli, Dolores Ianniciello, Sophia Letcher, Rosanna Salvia, Ambrogio Laginestra, David L. Kaplan, Patrizia Falabella
Publikováno v:
Small Science, Vol 4, Iss 10, Pp n/a-n/a (2024)
The increasing global population and demand for meat have led to the need to find sustainable and viable alternatives to traditional production methods. One potential solution is cultivated meat (CM), which involves producing meat in vitro from anima
Externí odkaz:
https://doaj.org/article/48d2410b17e74109b6ebaec77e0058f9
Adversarial attacks in reinforcement learning (RL) often assume highly-privileged access to the victim's parameters, environment, or data. Instead, this paper proposes a novel adversarial setting called a Cheap Talk MDP in which an Adversary can mere
Externí odkaz:
http://arxiv.org/abs/2211.11030
Autor:
Lu, Chris, Kuba, Jakub Grudzien, Letcher, Alistair, Metz, Luke, de Witt, Christian Schroeder, Foerster, Jakob
Tremendous progress has been made in reinforcement learning (RL) over the past decade. Most of these advancements came through the continual development of new algorithms, which were designed using a combination of mathematical derivations, intuition
Externí odkaz:
http://arxiv.org/abs/2210.05639
Learning in general-sum games is unstable and frequently leads to socially undesirable (Pareto-dominated) outcomes. To mitigate this, Learning with Opponent-Learning Awareness (LOLA) introduced opponent shaping to this setting, by accounting for each
Externí odkaz:
http://arxiv.org/abs/2203.04098
Autor:
Granados-Galvan, Ingrid-Alejandra, Provencher, Jennifer F., Mallory, Mark L., De Silva, Amila, Muir, Derek C.G., Kirk, Jane L., Wang, Xiaowa, Letcher, Robert J., Loseto, Lisa L., Hamilton, Bonnie M., Lu, Zhe
Publikováno v:
In Science of the Total Environment 15 November 2024 951
Publikováno v:
In Chemosphere November 2024 367
Publikováno v:
In Information Fusion October 2024 110
Publikováno v:
Quantum, Vol 8, p 1484 (2024)
The training of a parameterized model largely depends on the landscape of the underlying loss function. In particular, vanishing gradients are a central bottleneck in the scalability of variational quantum algorithms (VQAs), and are known to arise in
Externí odkaz:
https://doaj.org/article/7fc8d2772bc04131bf4b54e071bc1524
Autor:
Lohmann, Rainer, Abass, Khaled, Bonefeld-Jørgensen, Eva Cecilie, Bossi, Rossana, Dietz, Rune, Ferguson, Steve, Fernie, Kim J., Grandjean, Philippe, Herzke, Dorte, Houde, Magali, Lemire, Mélanie, Letcher, Robert J., Muir, Derek, De Silva, Amila O., Ostertag, Sonja K., Rand, Amy A., Søndergaard, Jens, Sonne, Christian, Sunderland, Elsie M., Vorkamp, Katrin, Wilson, Simon, Weihe, Pal
Publikováno v:
In Science of the Total Environment 1 December 2024 954