Zobrazeno 1 - 10
of 71 741
pro vyhledávání: '"A. Krasner"'
Autor:
Mirvakili, Saeed1 saeedmirvakili@pnu.ac.ir, Hamidizadeh, Kazem1 k.hamidizadeh@pnu.ac.ir, Manaviyat, Rauofeh1 r.manaviyat@gmail.com
Publikováno v:
Facta Universitatis, Series: Mathematics & Informatics. 2024, Vol. 39 Issue 3, p481-492. 12p.
Autor:
Yasuda, Takehiko
We prove motivic versions of mass formulas by Krasner, Serre and Bhargava concerning (weighted) counts of extensions of local fields.
Comment: 31 pages
Comment: 31 pages
Externí odkaz:
http://arxiv.org/abs/2408.13481
Autor:
Błaszkiewicz, Piotr, Kowalski, Piotr
We show that the class of Krasner hyperfields is not elementary. To show this, we determine the rational rank of quotients of multiplicative groups in field extensions. Our argument uses Chebotarev's density theorem. We also discuss some related ques
Externí odkaz:
http://arxiv.org/abs/2404.14532
Publikováno v:
Categories and General Algebraic Structures with Applications, Vol 21, Iss 1, Pp 153-174 (2024)
In this paper, we study commutative Krasner hyperrings with nonzero identity and nonzero unital hypermodules. We introduce a new concept, the $\delta$-primary subhypermodule on Krasner hyperrings. Some characterizations and properties for $\delta$-pr
Externí odkaz:
https://doaj.org/article/62a3eb87f3b3489d87c6021075fcf4f3
Autor:
Mortazavi, A.1 amin_mortazavi90@yahoo.com, Davvaz, B.1 davvaz@yazd.ac.ir, Sorkatti, L.2 layla.sorkatti@gmail.com
Publikováno v:
Journal of Mathematical Extension. 2024, Vol. 18 Issue 2, p1-31. 31p.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Linzi, Alessandro
In 1957 M.\ Krasner described a complete valued field $(K,v)$ via the projective limit of a system of certain structures, called hyperfields, associated to $(K,v)$. We put this result in purely category-theoretic terms by translating into a limit con
Externí odkaz:
http://arxiv.org/abs/2309.16404
Publikováno v:
Proc. Amer. Math. Soc. 152 (2024), no. 12, 5039--5053
Given two groups $A$ and $B$, the Kaluzhnin--Krasner universal embedding theorem states that the wreath product $A\wr B$ acts as a universal receptacle for extensions from $A$ to $B$. For a split extension, this embedding is compatible with the canon
Externí odkaz:
http://arxiv.org/abs/2306.15458
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Gail Levin
A “compelling” biography of the brilliant abstract expressionist painter who was far more than just Mrs. Jackson Pollock (Los Angeles Times).Lee Krasner is best known as the artist-wife of Jackson Pollock, the renowned abstract expressionist pain