Zobrazeno 1 - 10
of 7 777
pro vyhledávání: '"A. Kottwitz"'
Autor:
Liu, Yachen
We derive formulas for the number of points on the basic stratum of certain Kottwitz varieties in terms of automorphic representations and certain explicit polynomials, for which we present efficient algorithms for computation. We obtain our results
Externí odkaz:
http://arxiv.org/abs/2411.01224
Autor:
Chen, Zongbin
We give a proof of the geometric fundamental lemma of Kottwitz. As explained by Laumon, this implies the fundamental lemma for the unitary groups.
Comment: 7 pages
Comment: 7 pages
Externí odkaz:
http://arxiv.org/abs/2410.14129
Autor:
Sempliner, Jack, Taylor, Richard
In his work on defining the pointed set B(G) for all local and global fields, Kottwitz introduced certain Galois gerbes and considered their 'algebraic' cohomology with values in algebraic groups. However, the gerbes so constructed are only canonical
Externí odkaz:
http://arxiv.org/abs/2407.06031
Autor:
Iakovenko, Sergei
Let $F$ be a local or global field and let $G$ be a linear algebraic group over $F$. We study Tannakian categories of representations of the Kottwitz gerbes $\text{Rep}(\text{Kt}_{F})$ and the functor $G\mapsto B(F, G)$ defined by Kottwitz in [28]. I
Externí odkaz:
http://arxiv.org/abs/2205.06510
In this paper we study the cohomology of PEL-type Rapoport-Zink spaces associated to unramified unitary similitude groups over $\Q_p$ in an odd number of variables. We extend the results of Kaletha-Minguez-Shin-White to construct a local Langlands co
Externí odkaz:
http://arxiv.org/abs/2104.05912
Autor:
Imai, Naoki
We define etale cohomology of the moduli spaces of mixed characteristic local shtukas so that it gives smooth representations including the case where the relevant elements of the Kottwitz set are both non-basic. Then we relate the etale cohomology o
Externí odkaz:
http://arxiv.org/abs/1909.02328
Autor:
Nguyen, Kieu Hieu
The Kottwitz conjecture describes the cohomology of basic Rapoport-Zink spaces using local Langlands correspondences. In this paper, via geometrical studies of some Kottwitz-type Shimura varieties, we prove this conjecture for basic simple unramified
Externí odkaz:
http://arxiv.org/abs/1903.11505
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Chi, Jingren
We study basic geometric properties of Kottwitz-Viehmann varieties, which are certain generalizations of affine Springer fibers that encode orbital integrals of spherical Hecke functions. Based on previous work of A. Bouthier and the author, we show
Externí odkaz:
http://arxiv.org/abs/1805.08770
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.