Zobrazeno 1 - 10
of 60
pro vyhledávání: '"A. Kh. Gelig"'
Autor:
A. Kh. Gelig, I. E. Zuber
Publikováno v:
Vestnik St. Petersburg University, Mathematics. 51:360-366
Consider system $$\left\{ {\begin{array}{*{20}{c}} {{{\dot x}_1} = {\varphi _1}(.) + {\rho _1}{x_{l + 1}},} \\ {{{\dot x}_m} = {\varphi _m}(.) + {\rho _m}{x_n},} \\ {{{\dot x}_{m + 1}} = {\varphi _{m + 1}}(.) + {\mu _1},} \\ {{{\dot x}_n} = {\varphi
Autor:
I. E. Zuber, Arkadii Kh. Gelig
Publikováno v:
Automation and Remote Control. 79:1545-1557
Consideration was given to the indeterminate nth order system with l observed coordinates and l controls l < n. With the use of a backstepping-based construction of the observer and quadratic Lyapunov function, designed were continuous or pulse contr
Autor:
A. Kh. Gelig, I. E. Zuber
Publikováno v:
Vestnik St. Petersburg University, Mathematics. 50:342-348
The system ẋ i = ϕ i (⋅) + x i+2, $$i \in \overline {1,n - 2} $$ , ẋ n−1 = ϕ n−1(⋅) + u 1, ẋ n = ϕ n (⋅) + u 2,where ϕ i (·) are nonanticipating functionals of an arbitrary nature with the following properties— $$\left| {{\varp
Publikováno v:
Automation and Remote Control. 77:1768-1780
Consideration was given to the new classes of continuous and discrete uncertain systems where the elements of the control plant matrix represent physically realizable arbitrary functionals with only the boundaries of their variation known. The stabil
Publikováno v:
Vestnik of Saint Petersburg University. Series 1. Mathematics. Mechanics. Astronomy. 3:402-407
The system of equations \(\frac{{dx}}{{dt}} = A\left( \cdot \right)x + B\left( \cdot \right)u\), where A(·) ∈ ℝn × n, B(·) ∈ ℝn × m, S(·) ∈ Rn × m, is considered. The elements of the matrices A(·), B(·), S(·) are uniformly bounded
Autor:
Irina E. Zuber, Arkadiy Kh. Gelig
Publikováno v:
Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy. 5
Autor:
A. Kh. Gelig, I. E. Zuber
Publikováno v:
Vestnik St. Petersburg University: Mathematics. 48:209-213
The system $$\frac{{dx}}{{dt}} = A\left( \cdot \right)x + B\left( \cdot \right)u,{\kern 1pt} \frac{{dy}}{{dt}} = A\left( \cdot \right)y + B\left( \cdot \right)u + D\left( {C*y - v} \right)$$ where v = C*x is an output, u = S*y is a control, A(·) ∈
Autor:
I. E. Zuber, A. Kh. Gelig
Publikováno v:
Vestnik St. Petersburg University: Mathematics. 48:140-146
The system $$\frac{{dx}}{{dt}} = A(t,x)x + b(t,x)u,$$ (1) where A(t, x) ∈ Rn × n, b(t, x) = β(t, x)e1, β(t, x) ∈ R1, and e1*= (1, 0, …, 0), is considered. The coefficients aij(t, x) of the matrix A(t, x) and the function β(t, x) are real-va
Autor:
I. E. Zuber, A. Kh. Gelig
Publikováno v:
Vestnik St. Petersburg University: Mathematics. 48:61-65
The system xk + 1 = A(k)xk is considered, where A(k) є ℝn × ℝn is a matrix coefficients aij(k) of which are nonanticipating functionals of any nature. It is assumed that the elements of the first to (p + 1)st columns above the main diagonal and
Publikováno v:
IFAC-PapersOnLine. 48:396-401
The paper gives a brief retrospective review of some research on impulsive control systems that was conducted at the Department of Theoretical Cybernetics of Saint Petersburg State University in 1960s—2010s. Until 2012 the department was headed and