Zobrazeno 1 - 10
of 259
pro vyhledávání: '"A. Kh. Gelig"'
Autor:
Štefan Schwabik
Publikováno v:
Applications of Mathematics. 44:244-244
This book presents a development of the frequency-domain approach to the stability study of stationary sets of systems with discontinuous nonlinearities. The treatment is based on the theory of differential inclusions and the second Lyapunov method.
Autor:
A. Kh. Gelig, I. E. Zuber
Publikováno v:
Vestnik St. Petersburg University, Mathematics. 51:360-366
Consider system $$\left\{ {\begin{array}{*{20}{c}} {{{\dot x}_1} = {\varphi _1}(.) + {\rho _1}{x_{l + 1}},} \\ {{{\dot x}_m} = {\varphi _m}(.) + {\rho _m}{x_n},} \\ {{{\dot x}_{m + 1}} = {\varphi _{m + 1}}(.) + {\mu _1},} \\ {{{\dot x}_n} = {\varphi
Autor:
I. E. Zuber, Arkadii Kh. Gelig
Publikováno v:
Automation and Remote Control. 79:1545-1557
Consideration was given to the indeterminate nth order system with l observed coordinates and l controls l < n. With the use of a backstepping-based construction of the observer and quadratic Lyapunov function, designed were continuous or pulse contr
Autor:
A. Kh. Gelig, I. E. Zuber
Publikováno v:
Vestnik St. Petersburg University, Mathematics. 50:342-348
The system ẋ i = ϕ i (⋅) + x i+2, $$i \in \overline {1,n - 2} $$ , ẋ n−1 = ϕ n−1(⋅) + u 1, ẋ n = ϕ n (⋅) + u 2,where ϕ i (·) are nonanticipating functionals of an arbitrary nature with the following properties— $$\left| {{\varp
Publikováno v:
Automation and Remote Control. 77:1768-1780
Consideration was given to the new classes of continuous and discrete uncertain systems where the elements of the control plant matrix represent physically realizable arbitrary functionals with only the boundaries of their variation known. The stabil
Publikováno v:
Vestnik of Saint Petersburg University. Series 1. Mathematics. Mechanics. Astronomy. 3:402-407
The system of equations \(\frac{{dx}}{{dt}} = A\left( \cdot \right)x + B\left( \cdot \right)u\), where A(·) ∈ ℝn × n, B(·) ∈ ℝn × m, S(·) ∈ Rn × m, is considered. The elements of the matrices A(·), B(·), S(·) are uniformly bounded
Autor:
Irina E. Zuber, Arkadiy Kh. Gelig
Publikováno v:
Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy. 5
Autor:
A. Kh. Gelig, I. E. Zuber
Publikováno v:
Vestnik St. Petersburg University: Mathematics. 48:209-213
The system $$\frac{{dx}}{{dt}} = A\left( \cdot \right)x + B\left( \cdot \right)u,{\kern 1pt} \frac{{dy}}{{dt}} = A\left( \cdot \right)y + B\left( \cdot \right)u + D\left( {C*y - v} \right)$$ where v = C*x is an output, u = S*y is a control, A(·) ∈