Zobrazeno 1 - 10
of 10 628
pro vyhledávání: '"A. KIENLE"'
Autor:
F. Bergmann, N. Halmen, C. Scalfi-Happ, D. Reitzle, A. Kienle, L. Mittelberg, B. Baudrit, T. Hochrein, M. Bastian
Publikováno v:
Journal of Sensors and Sensor Systems, Vol 12, Pp 175-185 (2023)
In the research work presented here, an integrating sphere demonstrator which is suitable for the non-destructive determination of the degree of cross-linking or curing and has the potential for use as an at-line device for in-process quality assuran
Externí odkaz:
https://doaj.org/article/b3589819ba9640a48f798c6239e5bbf5
Autor:
Islam, Md Redwanul, Wolff, Niklas, Schönweger, Georg, Kreutzer, Tom-Niklas, Brown, Margaret, Gremmel, Maike, Straňák, Patrik, Kirste, Lutz, Brennecka, Geoff L., Fichtner, Simon, Kienle, Lorenz
This article examines systematic oxygen (O)-incorporation to reduce total leakage currents in sputtered wurtzite-type ferroelectric Al0.73Sc0.27N thin films, along with its impact on the material structure and the polarity of the as-grown films. The
Externí odkaz:
http://arxiv.org/abs/2411.17360
CAD models are widely used in industry and are essential for robotic automation processes. However, these models are rarely considered in novel AI-based approaches, such as the automatic synthesis of robot programs, as there are no readily available
Externí odkaz:
http://arxiv.org/abs/2409.08704
This paper presents SPI-DP, a novel first-order optimizer capable of optimizing robot programs with respect to both high-level task objectives and motion-level constraints. To that end, we introduce DGPMP2-ND, a differentiable collision-free motion p
Externí odkaz:
http://arxiv.org/abs/2409.08678
This paper examines the challenges and advancements in recognizing seals within their natural habitats using conventional photography, underscored by the emergence of machine learning technologies. We used the leopard seal, \emph{Hydrurga leptonyx},
Externí odkaz:
http://arxiv.org/abs/2408.07269
Autor:
Kienle, Claudius, Alt, Benjamin, Celik, Onur, Becker, Philipp, Katic, Darko, Jäkel, Rainer, Neumann, Gerhard
High-level robot skills represent an increasingly popular paradigm in robot programming. However, configuring the skills' parameters for a specific task remains a manual and time-consuming endeavor. Existing approaches for learning or optimizing thes
Externí odkaz:
http://arxiv.org/abs/2407.15660
Autor:
Gershon, Talia, Seelam, Seetharami, Belgodere, Brian, Bonilla, Milton, Hoang, Lan, Barnett, Danny, Chung, I-Hsin, Mohan, Apoorve, Chen, Ming-Hung, Luo, Lixiang, Walkup, Robert, Evangelinos, Constantinos, Salaria, Shweta, Dombrowa, Marc, Park, Yoonho, Kayi, Apo, Schour, Liran, Alim, Alim, Sydney, Ali, Maniotis, Pavlos, Schares, Laurent, Metzler, Bernard, Karacali-Akyamac, Bengi, Wen, Sophia, Chiba, Tatsuhiro, Choochotkaew, Sunyanan, Yoshimura, Takeshi, Misale, Claudia, Elengikal, Tonia, Connor, Kevin O, Liu, Zhuoran, Molina, Richard, Schneidenbach, Lars, Caden, James, Laibinis, Christopher, Fonseca, Carlos, Tarasov, Vasily, Sundararaman, Swaminathan, Schmuck, Frank, Guthridge, Scott, Cohn, Jeremy, Eshel, Marc, Muench, Paul, Liu, Runyu, Pointer, William, Wyskida, Drew, Krull, Bob, Rose, Ray, Wolfe, Brent, Cornejo, William, Walter, John, Malone, Colm, Perucci, Clifford, Franco, Frank, Hinds, Nigel, Calio, Bob, Druyan, Pavel, Kilduff, Robert, Kienle, John, McStay, Connor, Figueroa, Andrew, Connolly, Matthew, Fost, Edie, Roma, Gina, Fonseca, Jake, Levy, Ido, Payne, Michele, Schenkel, Ryan, Malki, Amir, Schneider, Lion, Narkhede, Aniruddha, Moshref, Shekeba, Kisin, Alexandra, Dodin, Olga, Rippon, Bill, Wrieth, Henry, Ganci, John, Colino, Johnny, Habeger-Rose, Donna, Pandey, Rakesh, Gidh, Aditya, Gaur, Aditya, Patterson, Dennis, Salmani, Samsuddin, Varma, Rambilas, Rumana, Rumana, Sharma, Shubham, Mishra, Mayank, Panda, Rameswar, Prasad, Aditya, Stallone, Matt, Zhang, Gaoyuan, Shen, Yikang, Cox, David, Puri, Ruchir, Agrawal, Dakshi, Thorstensen, Drew, Belog, Joel, Tang, Brent, Gupta, Saurabh Kumar, Biswas, Amitabha, Maheshwari, Anup, Gampel, Eran, Van Patten, Jason, Runion, Matthew, Kaki, Sai, Bogin, Yigal, Reitz, Brian, Pritko, Steve, Najam, Shahan, Nambala, Surya, Chirra, Radhika, Welp, Rick, DiMitri, Frank, Telles, Felipe, Arvelo, Amilcar, Chu, King, Seminaro, Ed, Schram, Andrew, Eickhoff, Felix, Hanson, William, Mckeever, Eric, Joseph, Dinakaran, Chaudhary, Piyush, Shivam, Piyush, Chaudhary, Puneet, Jones, Wesley, Guthrie, Robert, Bostic, Chris, Islam, Rezaul, Duersch, Steve, Sawdon, Wayne, Lewars, John, Klos, Matthew, Spriggs, Michael, McMillan, Bill, Gao, George, Kamra, Ashish, Singh, Gaurav, Curry, Marc, Katarki, Tushar, Talerico, Joe, Shi, Zenghui, Malleni, Sai Sindhur, Gallen, Erwan
AI Infrastructure plays a key role in the speed and cost-competitiveness of developing and deploying advanced AI models. The current demand for powerful AI infrastructure for model training is driven by the emergence of generative AI and foundational
Externí odkaz:
http://arxiv.org/abs/2407.05467
Autor:
Lange, Hannah, Bornet, Guillaume, Emperauger, Gabriel, Chen, Cheng, Lahaye, Thierry, Kienle, Stefan, Browaeys, Antoine, Bohrdt, Annabelle
Owing to their great expressivity and versatility, neural networks have gained attention for simulating large two-dimensional quantum many-body systems. However, their expressivity comes with the cost of a challenging optimization due to the in gener
Externí odkaz:
http://arxiv.org/abs/2406.00091
Autor:
Alt, Benjamin, Zahn, Johannes, Kienle, Claudius, Dvorak, Julia, May, Marvin, Katic, Darko, Jäkel, Rainer, Kopp, Tobias, Beetz, Michael, Lanza, Gisela
While recent advances in deep learning have demonstrated its transformative potential, its adoption for real-world manufacturing applications remains limited. We present an Explanation User Interface (XUI) for a state-of-the-art deep learning-based r
Externí odkaz:
http://arxiv.org/abs/2404.19349
Autor:
Yamaga, T., Ajimura, S., Asano, H., Beer, G., Bhang, H., Bragadireanu, M., Buehler, P., Busso, L., Cargnelli, M., Choi, S., Curceanu, C., Enomoto, S., Fujioka, H., Fujiwara, Y., Fukuda, T., Guaraldo, C., Hashimoto, T., Hayano, R. S., Hiraiwa, T., Iio, M., Iliescu, M., Inoue, K., Ishiguro, Y., Ishikawa, T., Ishimoto, S., Itahashi, K., Iwai, M., Iwasaki, M., Kanno, K., Kato, K., Kato, Y., Kawasaki, S., Kienle, P., Kou, H., Ma, Y., Marton, J., Matsuda, Y., Mizoi, Y., Morra, O., Murayama, R., Nagae, T., Noumi, H., Ohnishi, H., Okada, S., Outa, H., Piscicchia, K., Sada, Y., Sakaguchi, A., Sakuma, F., Sato, M., Scordo, A., Sekimoto, M., Shi, H., Shirotori, K., Sirghi, D., Sirghi, F., Suzuki, S., Suzuki, T., Tanida, K., Tatsuno, H., Tokuda, M., Tomono, D., Toyoda, A., Tsukada, K., Doce, O. Vazquez, Widmann, E., Yamazaki, T., Yim, H., Zhang, Q., Zmeskal, J.
We conducted measurements of $K^- + {^3{\rm He}} \to \pi \!Y \!N + N'$ reactions using a $1~{\rm GeV}/c$ $K^-$-beam, with the objective of understanding the broad decay width of $\bar{K} \!N \!N$ (approximately twice as broad as that of $\Lambda(1405
Externí odkaz:
http://arxiv.org/abs/2404.01773