Zobrazeno 1 - 10
of 35
pro vyhledávání: '"A. K. Tsikh"'
Publikováno v:
Doklady Mathematics. 102:279-282
Let Δn be the discriminant of a general polynomial of degree n and $$\mathcal{N}$$ be the Newton polytope of Δn. We give a geometric proof of the fact that the truncations of Δn to faces of $$\mathcal{N}$$ are equal to products of discriminants of
Autor:
A. N. Cherepanskiy, A. K. Tsikh
Publikováno v:
Integral Transforms and Special Functions. 31:838-855
Description of convergence domains for multiple power series is a quite difficult problem. In 1889 J.Horn showed that the case of hypergeomteric series is more favourable. He found a parameterizati...
Publikováno v:
Journal of Siberian Federal University. Mathematics & Physics. :509-529
We prove two theorems on the domains of convergence for A-hypergeometric series and for associated Mellin-Barnes type integrals. The exact convergence domains are described in terms of amoebas and coamoebas of the corresponding principal A-determinan
Autor:
Armen Sergeev, Alexander Ivanovich Aptekarev, N. G. Kruzhilin, P. V. Paramonov, Vladimir Antonovich Zorich, A. B. Sukhov, Sergey Pinchuk, Azimbay Sadullaev, Sergey Pavlovich Suetin, C. Yu. Orevkov, A. K. Tsikh, V. K. Beloshapka, Vladimir Nikolaevich Dubinin, K. Yu. Fedorovskiy, Viktor Ivanovich Buslaev, S. Yu. Nemirovski, V. V. Goryainov
Publikováno v:
Russian Mathematical Surveys. 73:1137-1144
Autor:
A. K. Tsikh
The technique of residues is known for its many applications in different branches of mathematics. Tsikh's book presents a systematic account of residues associated with holomorphic mappings and indicates many applications. The book begins with preli
Autor:
A. K. Tsikh, E. N. Mikhalkin
Publikováno v:
Sbornik: Mathematics. 206:282-310
We consider an algebraic equation with variable complex coefficients. For the reduced discriminant set of such an equation we obtain parametrizations of the singular strata corresponding to the existence of roots of multiplicity at least j. These par
Autor:
L. A. Aĭzenberg, A. B. Aleksandrov, P. V. Degtyar′, Ya. Yu. Gaĭdis, S. G. Gindikin, V. A. Kakichev, V. P. Khavin, G. M. Khenkin, B. I. Odvirko-Budko, A. L. Onishchik, S. I. Pinchuk, A. Yu. Pushnikov, V. V. Rabotin, L. I. Ronkin, A. Sadullaev, N. N. Tarkhanov, A. K. Tsikh, A. P. Yuzhakov
The papers in this volume range over a variety of topics in complex analysis, including holomorphic and entire functions, integral representations, the local theory of residues, complex manifolds, singularities, and CR structures.
Publikováno v:
Mathematical Physics, Analysis and Geometry. 16:89-108
The amoeba of a complex hypersurface is its image under a logarithmic projection. A number of properties of algebraic hypersurface amoebas are carried over to the case of transcendental hypersurfaces. We demonstrate the potential that amoebas can bri
Publikováno v:
Sbornik: Mathematics. 199:1505-1521
A generalization to several variables of the classical Poincare theorem on the asymptotic behaviour of solutions of a linear difference equations is presented.
Publikováno v:
Springer Proceedings in Mathematics & Statistics ISBN: 9784431557432
An amoeba of an analytic set is the real part of its image in a logarithmic scale. Among all hypersurfaces A-discriminantal sets have the most simple amoebas. We prove that any singular cuspidal stratum of the classical discriminant can be transforme
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::416a810d7e9910a1c3bed0c1a484b9fb
https://doi.org/10.1007/978-4-431-55744-9_19
https://doi.org/10.1007/978-4-431-55744-9_19