Zobrazeno 1 - 10
of 84
pro vyhledávání: '"A. K. Pogrebkov"'
Autor:
Andrei K. Pogrebkov
Publikováno v:
Mathematics, Vol 9, Iss 16, p 1988 (2021)
The Kadomtsev–Petviashvili equation is known to be the leading term of a semi-infinite hierarchy of integrable equations with evolutions given by times with positive numbers. Here, we introduce new hierarchy directed to negative numbers of times. T
Externí odkaz:
https://doaj.org/article/6c946c2b567e4a9698353e1ab46019d8
Autor:
Iskander A. Taimanov, Nikita Nekrasov, Petr Georgievich Grinevich, O. K. Sheinman, Sergey Novikov, M. A. Olshanetsky, A. N. Varchenko, Leonid Chekhov, S. Yu. Dobrokhotov, Semen Bensionovich Shlosman, Andrei Marshakov, Andrei Mironov, Aleksandr Petrovich Veselov, Michael Anatol'evich Tsfasman, Viktor M Buchstaber, A. K. Pogrebkov, S. M. Grushevsky, Anton Zabrodin, A. Yu. Okounkov
Publikováno v:
Russian Mathematical Surveys. 76:733-743
Autor:
A. K. Pogrebkov
Publikováno v:
Theoretical and Mathematical Physics. 205:1585-1592
The approach based on commutator identities for elements of associative algebras was previously effectively used to investigate $$(2{+}1)$$ -dimensional integrable systems. We develop this approach to investigate integrable hierarchies and their rela
Autor:
A. K. Pogrebkov
Publikováno v:
Theoretical and Mathematical Physics. 204:1201-1208
We realize an example of induced dynamics using new multiplicative determinant relations whose roots give the particle positions. We present both a general scheme for describing completely integrable dynamical systems parameterized by an arbitrary $$
Autor:
A. K. Pogrebkov
Publikováno v:
Theoretical and Mathematical Physics. 197:1779-1796
We previously proposed an approach for constructing integrable equations based on the dynamics in associative algebras given by commutator relations. In the framework of this approach, evolution equations determined by commutators of (or similarity t
Publikováno v:
Russian Mathematics. 62:50-58
We discuss the problems of the connections of the modern theory of integrability and the corresponding overdetermined linear systems with works of geometers of the late nineteenth century. One of these questions is the generalization of the theory of
Publikováno v:
Proceedings of the Steklov Institute of Mathematics. 302:250-269
For a Darboux system in ℝ3, we introduce a class of solutions for which an auxiliary second-order linear problem satisfies the factorization condition. We show that this reduction provides the (local) solvability of the Darboux system, and present
Autor:
A. K. Pogrebkov
Publikováno v:
Teoreticheskaya i Matematicheskaya Fizika. 197:444-463
Autor:
A. K. Pogrebkov
Publikováno v:
Symmetry
Volume 11
Issue 3
Symmetry, Vol 11, Iss 3, p 436 (2019)
Volume 11
Issue 3
Symmetry, Vol 11, Iss 3, p 436 (2019)
We considered the relation between two famous integrable equations: The Hirota difference equation (HDE) and the Darboux system that describes conjugate curvilinear systems of coordinates in R 3 . We demonstrated that specific properties of solutions
Autor:
A. K. Pogrebkov
Induced dynamics is defined as dynamics of real zeros with respect to $x$ of equation $f(q_1-x,\ldots,q_N-x,p_1,\ldots,p_N)=0$, where $f$ is a function, and $q_i$ and $p_j$ are canonical variables obeying some (free) evolution. Identifying zero level
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4761effab63c9755c8dd701c4bf6e8d4