Zobrazeno 1 - 10
of 4 635
pro vyhledávání: '"A. Julg"'
Autor:
Guo, Liang, Wang, Qin
In this note, we provide a proof of the generalised Green-Julg theorem by using the language of twisted localization algebras introduced by G. Yu. This proof is for those who have interests in coarse geometry but not so familiar with KK-theory or E-t
Externí odkaz:
http://arxiv.org/abs/2208.11595
Autor:
Julg, Pierre
We propose a new look at the Julg-Valette theorem on K-theoretic amenability for groups operating on trees. The main tool is a generalization of a construction of uniformly bounded representations of the free groups due to Pytlik and Szwarc.
Com
Com
Externí odkaz:
http://arxiv.org/abs/1310.6941
Autor:
Henry, Simon
We investigate what would be a correct definition of categorical completeness for C*-categories and propose several variants of such a definition that make the category of Hilbert modules over a C*-algebra a free (co)completion. We extend results abo
Externí odkaz:
http://arxiv.org/abs/1512.03290
Autor:
Paravicini, Walther
We extend the definition of the bivariant $K$-theory $kk^{ban}$ from plain Banach algebras to Banach algebras equipped with an action of a locally compact Hausdorff group $G$. We also define a natural transformation from Lafforgue's theory $KK^{ban}_
Externí odkaz:
http://arxiv.org/abs/1408.2878
Autor:
Burgstaller, Bernhard
For every finite unital inverse semigroup $S$ and $S$-$C^*$-algebra $A$ we establish an isomorphism between $KK^S(\mathbb{C},A)$ and $K(A \rtimes S)$. This extends the classical Green--Julg isomorphism from finite groups to finite inverse semigroups.
Externí odkaz:
http://arxiv.org/abs/1405.1607
Autor:
Paravicini, Walther
The Green-Julg theorem states that K_0^G(B) is isomorphic to K_0(L^1(G,B)) for every compact group G and every G-C*-algebra B. We formulate a generalisation of this result to proper groupoids and Banach algebras and deduce that the Bost assembly map
Externí odkaz:
http://arxiv.org/abs/0902.4365
Autor:
Ponge, Raphael
In this note we point out and fill a gap in the proof by Julg-Kasparov of the Baum-Connes conjecture with coefficients for discrete subgroups of $\op{SU}(n,1)$. The issue at stake is the proof that the complex powers of the contact Laplacian are elem
Externí odkaz:
http://arxiv.org/abs/math/0601528
Autor:
Paravicini, Walther
Publikováno v:
In Journal of Functional Analysis 15 May 2015 268(10):3162-3210
The aim of this article is to construct a specific Poisson transform mapping differential forms on the sphere $S^{2n+1}$ endowed with its natural CR structure to forms on complex hyperbolic space. The transforms we construct have values that are harm
Externí odkaz:
http://arxiv.org/abs/2402.08262
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.