Zobrazeno 1 - 10
of 856
pro vyhledávání: '"A. Jiménez-Vargas"'
Given an open subset $U$ of a complex Banach space $E$, a weight $v$ on $U$, and a complex Banach space $F$, let $\mathcal{H}^\infty_v(U,F)$ denote the Banach space of all weighted holomorphic mappings $f\colon U\to F$, under the weighted supremum no
Externí odkaz:
http://arxiv.org/abs/2408.14459
Given an open subset $U$ of a complex Banach space $E$, a weight $v$ on $U$ and a complex Banach space $F$, let $H^\infty_v(U,F)$ denote the Banach space of all weighted holomorphic mappings from $U$ into $F$, endowed with the weighted supremum norm.
Externí odkaz:
http://arxiv.org/abs/2311.14070
We introduce the concept of vector-valued holomorphic mapping on the complex unit disc whose derivative factors through a Hilbert space and state the main properties of the space formed by such Bloch mappings equipped with a natural norm: linearizati
Externí odkaz:
http://arxiv.org/abs/2311.08800
The notion of $p$-summing Bloch mapping from the complex unit open disc $\mathbb{D}$ into a complex Banach space $X$ is introduced for any $1\leq p\leq\infty$. It is shown that the linear space of such mappings, equipped with a natural seminorm $\pi^
Externí odkaz:
http://arxiv.org/abs/2308.03491
The known duality of the space of Bloch complex-valued functions on the open complex unit disc $\mathbb{D}$ is addressed under a new approach with the introduction of the concepts of Bloch molecules and Bloch-free Banach space of $\mathbb{D}$. We int
Externí odkaz:
http://arxiv.org/abs/2308.02461
Autor:
JIMÉNEZ-VARGAS, A.1 ajimenez@ual.es, RUIZ-CASTERNADO, D.1 drc446@ual.es
Publikováno v:
Constructive Mathematical Analysis. Sep2024, Vol. 7 Issue 3, p98-113. 16p.
Autor:
Jiménez-Vargas, A.
Related to the concept of $p$-compact operator with $p\in [1,\infty]$ introduced by Sinha and Karn, this paper deals with the space $\mathcal{H}^\infty_{\mathcal{K}_p}(U,F)$ of all Banach-valued holomorphic mappings on an open subset $U$ of a complex
Externí odkaz:
http://arxiv.org/abs/2209.03662
Let $E$ and $F$ be complex Banach spaces, $U$ be an open subset of $E$ and $1\leq p\leq\infty$. We introduce and study the notion of a Cohen strongly $p$-summing holomorphic mapping from $U$ to $F$, a holomorphic version of a strongly $p$-summing lin
Externí odkaz:
http://arxiv.org/abs/2209.03038
Applying a linearization theorem due to J. Mujica, we study the ideals of bounded holomorphic mappings $\mathcal{H}^\infty\circ\mathcal{I}$ generated by composition with an operator ideal $\mathcal{I}$. The bounded-holomorphic dual ideal of $\mathcal
Externí odkaz:
http://arxiv.org/abs/2209.02956
Publikováno v:
Bull. Malays. Math. Sci. Soc. 46 (2023), no. 1, 20
Using Mujica's linearization theorem, we extend to the holomorphic setting some classical characterizations of compact (weakly compact, Rosenthal, Asplund) linear operators between Banach spaces such as the Schauder, Gantmacher and Gantmacher-Nakamur
Externí odkaz:
http://arxiv.org/abs/2209.01576