Zobrazeno 1 - 10
of 1 624
pro vyhledávání: '"A. Jaidane"'
Autor:
Wiesenfeld, Laurent, Niraula, Prajwal, de Wit, Julien, Jaïdane, Nejmeddine, Gordon, Iouli E., Hargreaves, Robert J.
Light-matter interactions lie at the heart of our exploration of exoplanetary atmospheres. Interpreting data obtained by remote sensing is enabled by meticulous, time- and resource-consuming work aiming at deepening our understanding of such interact
Externí odkaz:
http://arxiv.org/abs/2409.04439
Autor:
Jaidane, Rached
In this work, we establish the existence of solutions that change sign at low energy for a non-local weighted Kirchhoff problem in the set $\mathbb{R}^{N}, N>2$. The non-linearity of the equation is assumed to have exponential growth in view of the l
Externí odkaz:
http://arxiv.org/abs/2309.10768
In this article, we study the following non local problem $$g\big(\int_{B}w(x) |\Delta u|^{2}\big)\Delta(w(x)\Delta u) =|u|^{q-2}u +\ f(x,u) \quad\mbox{ in }\quad B, \quad u=\frac{\partial u}{\partial n}=0 \quad\mbox{ on } \quad\partial B,$$ where $B
Externí odkaz:
http://arxiv.org/abs/2305.04255
The main purpose of this paper is to study the existence of least energy sign-changing solutions for Logarithmic weighted $(N,p)$-Laplacian problem in the unit ball $B$ of $\mathbb{R}^{N},$ $N>2$. The non-linearity of the equation is assumed to have
Externí odkaz:
http://arxiv.org/abs/2304.11612
Autor:
Dridi, Brahim, Jaidane, Rached
In this article, we study the following problem $$\Delta(w(x)\Delta u) = \ f(x,u) \quad\mbox{ in }\quad B, \quad u=\frac{\partial u}{\partial n}=0 \quad\mbox{ on } \quad\partial B,$$ where $B$ is the unit ball of $\mathbb{R}^{4}$ and $ w(x)$ a singul
Externí odkaz:
http://arxiv.org/abs/2211.10067
Autor:
Dridi, Brahim, Jaidane, Rached
In this article, we study the following problem $$-{\rm div} (\omega(x)|\nabla u|^{N-2} \nabla u) = \lambda\ f(x,u) \quad\mbox{ in }\quad B, \quad u=0 \quad\mbox{ on } \quad\partial B,$$ where $B$ is the unit ball of $\mathbb{R^{N}}$, $N\geq2$ and $
Externí odkaz:
http://arxiv.org/abs/2206.10615
Autor:
Dridi, Brahim, Jaidane, Rachaid
In this paper, we deal with the logarithmic weighted fourth order elliptic equation in the unit disk of $B\subset\R^{4}$: $$\displaystyle(P_{\lambda})~~\Delta(w(x) \Delta u) = \lambda\ f(x,u) \quad\mbox{ in }\quad B, \quad u=\frac{\partial u}{\partia
Externí odkaz:
http://arxiv.org/abs/2206.10001
Publikováno v:
Boundary Value Problems, Vol 2024, Iss 1, Pp 1-22 (2024)
Abstract This article aims to investigate the existence of nontrivial solutions with minimal energy for a logarithmic weighted ( N , p ) $(N,p)$ -Laplacian problem in the unit ball B of R N $\mathbb{R}^{N}$ , N > 2 $N>2$ . The nonlinearities of the e
Externí odkaz:
https://doaj.org/article/504cc2b3076d48ffa12dfa659d548787
Autor:
Dridi, Brahim, Jaidane, Rached
We deal with a weighted biharmonic problem in the unit ball of $\mathbb{R}^{4}$. The non-linearity is assumed to have critical exponential growth in view of Adam's type inequalities. The weight $w(x)$ is of logarithm type and the potential $V$ is a p
Externí odkaz:
http://arxiv.org/abs/2201.10433
Autor:
Dridi, Brahim, Jaidane, Rached
We deal with nonlinear weighted biharmonic problem in the unit ball of $\mathbb{R}^{4}$. The weight is of logarithm type. The nonlinearity is critical in view of Adam's inequalities in the weighted Sobolev space $W^{2,2}_{0}(B,w)$. We prove the exist
Externí odkaz:
http://arxiv.org/abs/2201.09858