Zobrazeno 1 - 10
of 53
pro vyhledávání: '"A. I. Budkin"'
Autor:
A. I. Budkin
Publikováno v:
Siberian Mathematical Journal. 64:22-32
Autor:
A. I. Budkin
Publikováno v:
Sibirskie Elektronnye Matematicheskie Izvestiya. 18:1757-1770
Autor:
A. I. Budkin
Publikováno v:
Algebra i logika. 60:123-136
Let N be a quasivariety of torsion-free nilpotent groups of class at most two. It is proved that the set of subquasivarieties in N, which have no independent basis of quasiidentities and are generated by a finitely generated group, is infinite. It is
Autor:
A. I. Budkin
Publikováno v:
Journal of Mathematical Sciences. 253:354-359
We prove that there are infinitely many finitely based varieties of associative rings containing a proper variety M of associative rings with unsolvable Q-theories and thereby give an affirmative answer to Mal’tsev’s question in Kourovka Notebook
Autor:
A. I. Budkin
Publikováno v:
Sibirskie Elektronnye Matematicheskie Izvestiya. 17:2131-2141
Autor:
A. I. Budkin
Publikováno v:
Siberian Mathematical Journal. 61:983-993
Let $ {\mathcal{R}}_{p^{k}} $ be the variety of $ 2 $ -nilpotent groups of exponent $ p^{k} $ with commutator subgroup of exponent $ p $ ( $ p $ is a prime). We prove the infinity of the set of the subquasivarieties of $ {\mathcal{R}}_{p^{k}} $ $ (k\
Autor:
A. I. Budkin
Publikováno v:
Sibirskii matematicheskii zhurnal. 61:1234-1246
Autor:
A. I. Budkin
Publikováno v:
Algebra i logika. 58:320-333
Autor:
A. I. Budkin
Publikováno v:
Siberian Mathematical Journal. 60:565-571
Let n be an arbitrary natural and let ℳ be a class of universal algebras. Denote by Ln(ℳ) the class of algebras G such that, for every n-generated subalgebra A of G, the coset a/R (a ∈ A) modulo the least congruence R including A × A is an alg
Autor:
A. I. Budkin
Publikováno v:
Algebra and Logic. 58:214-223
It is proved that there exists a set ℛ of quasivarieties of torsion-free groups which (a) have an ω-independent basis of quasi-identities in the class 𝒦0 of torsion-free groups, (b) do not have an independent basis of quasi-identities in 𝒦0,