Zobrazeno 1 - 10
of 63
pro vyhledávání: '"A. Hippert Ferrer"'
Graphical models and factor analysis are well-established tools in multivariate statistics. While these models can be both linked to structures exhibited by covariance and precision matrices, they are generally not jointly leveraged within graph lear
Externí odkaz:
http://arxiv.org/abs/2210.11950
Publikováno v:
IEEE Transactions on Signal Processing, vol. 71, pp. 1669-1682, 2023
This paper tackles the problem of missing data imputation for noisy and non-Gaussian data. A classical imputation method, the Expectation Maximization (EM) algorithm for Gaussian mixture models, has shown interesting properties when compared to other
Externí odkaz:
http://arxiv.org/abs/2201.12020
This paper proposes a strategy to handle missing data for the classification of electroencephalograms using covariance matrices. It relies on the observed-data likelihood within an expectation-maximization algorithm. This approach is compared to two
Externí odkaz:
http://arxiv.org/abs/2110.10011
This paper tackles the problem of robust covariance matrix estimation when the data is incomplete. Classical statistical estimation methodologies are usually built upon the Gaussian assumption, whereas existing robust estimation ones assume unstructu
Externí odkaz:
http://arxiv.org/abs/2107.10505
Publikováno v:
In Signal Processing June 2022 195
Publikováno v:
IEEE Geoscience and Remote Sensing Letters
IEEE Geoscience and Remote Sensing Letters, IEEE-Institute of Electrical and Electronics Engineers, 2021, 18 (12), pp.2157-2161. ⟨10.1109/LGRS.2020.3015149⟩
IEEE Geoscience and Remote Sensing Letters, IEEE-Institute of Electrical and Electronics Engineers, 2021, 18 (12), pp.2157-2161. ⟨10.1109/LGRS.2020.3015149⟩
Missing data is a critical pitfall in the investigation of remotely sensed displacement measurement because it prevents from a full understanding of the physical phenomenon under observation. In the sight of reconstructing incomplete displacement dat
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
IEEE Geoscience & Remote Sensing Letters; Dec2021, Vol. 18 Issue 12, p2157-2161, 5p
Publikováno v:
IEEE Transactions on Geoscience & Remote Sensing; Jul2021, Vol. 59 Issue 7, p5794-5811, 18p
This paper tackles the problem of missing data imputation for noisy and non-Gaussian data. A classical imputation method, the Expectation Maximization (EM) algorithm for Gaussian mixture models, has shown interesting properties when compared to other
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0863a03fb2841866a3258424ee589192