Zobrazeno 1 - 10
of 396
pro vyhledávání: '"A. Harcos"'
Autor:
Boroczky, Karoly J., Domokos, Matyas, Freyer, Ansgar, Haberl, Christoph, Harcos, Gergely, li, Jin
We classify translatively exponential and GL(2,Z) covariant valuations on lattice polygons valued at measurable real functions. A typical example of such valuations is induced by the Laplace transform, but as it turns out there are many more. The arg
Externí odkaz:
http://arxiv.org/abs/2411.09383
Efficiently counting or detecting defective items is a crucial task in various fields ranging from biological testing to quality control to streaming algorithms. The \emph{group testing estimation problem} concerns estimating the number of defective
Externí odkaz:
http://arxiv.org/abs/2309.10286
Autor:
Bshouty, Nader H., Harcos, Gergely
Let $X$ be a set of items of size $n$ , which may contain some defective items denoted by $I$, where $I \subseteq X$. In group testing, a {\it test} refers to a subset of items $Q \subset X$. The test outcome is $1$ (positive) if $Q$ contains at leas
Externí odkaz:
http://arxiv.org/abs/2309.09613
Publikováno v:
Int. Math. Res. Not. 2024, no. 20, 13180-13190
We address the prime geodesic theorem in arithmetic progressions, and resolve conjectures of Golovchanski\u{\i}-Smotrov (1999). In particular, we prove that the traces of closed geodesics on the modular surface do not equidistribute in the reduced re
Externí odkaz:
http://arxiv.org/abs/2309.04186
Autor:
Harcos, Gergely, Thorner, Jesse
Let $\pi$ and $\pi'$ be cuspidal automorphic representations of $\mathrm{GL}(n)$ and $\mathrm{GL}(n')$ with unitary central characters. We establish a new zero-free region for all $\mathrm{GL}(1)$-twists of the Rankin-Selberg $L$-function $L(s,\pi\ti
Externí odkaz:
http://arxiv.org/abs/2303.16889
Autor:
Harcos, Gergely, Soundararajan, Kannan
Publikováno v:
Sci. China Math. 66 (2023), 2749-2753
Let $L/K$ be a Galois extension of number fields with Galois group $G$. We show that if the density of prime ideals in $K$ that split totally in $L$ tends to $1/|G|$ with a power saving error term, then the density of prime ideals in $K$ whose Froben
Externí odkaz:
http://arxiv.org/abs/2210.13412
Autor:
Erdős, Péter L., Harcos, Gergely, Kharel, Shubha R., Maga, Péter, Mezei, Tamás R., Toroczkai, Zoltán
Publikováno v:
Math. Ann. 388 (2024), 2195-2215
Let us call a simple graph on $n\geq 2$ vertices a prime gap graph if its vertex degrees are $1$ and the first $n-1$ prime gaps. We show that such a graph exists for every large $n$, and in fact for every $n\geq 2$ if we assume the Riemann hypothesis
Externí odkaz:
http://arxiv.org/abs/2205.00580
Publikováno v:
J. Math. Pures Appl. 168 (2022), 1-64
We open a new perspective on the sup-norm problem and propose a version for non-spherical Maass forms when the maximal compact K is non-abelian and the dimension of the K-type gets large. We solve this problem for an arithmetic quotient of G=SL_2(C)
Externí odkaz:
http://arxiv.org/abs/2107.05973
Publikováno v:
Amer. J. Math. 146 (2024), 107-160
We prove the density hypothesis for wide families of arithmetic orbifolds arising from all division quaternion algebras over all number fields of bounded degree. Our power-saving bounds on the multiplicities of non-tempered representations are unifor
Externí odkaz:
http://arxiv.org/abs/2007.13961
Publikováno v:
Int. Math. Res. Not. 2022, no. 1, 373-390
We estimate, in a number field, the number of elements and the maximal number of linearly independent elements, with prescribed bounds on their valuations. As a by-product, we obtain new bounds for the successive minima of ideal lattices. Our argumen
Externí odkaz:
http://arxiv.org/abs/1907.01116