Zobrazeno 1 - 10
of 559
pro vyhledávání: '"A. Gladbach"'
This paper deals with the large-scale behaviour of nonlinear minimum-cost flow problems on random graphs. In such problems, a random nonlinear cost functional is minimised among all flows (discrete vector-fields) with a prescribed net flux through ea
Externí odkaz:
http://arxiv.org/abs/2412.05217
Autor:
Gladbach, Peter, Kopfer, Eva
The aim of this paper is to examine the large-scale behavior of dynamical optimal transport on stationary random graphs embedded in $\R^n$. Our primary contribution is a stochastic homogenization result that characterizes the effective behavior of th
Externí odkaz:
http://arxiv.org/abs/2411.04157
Autor:
Gladbach, Peter, Olbermann, Heiner
We consider a thin elastic sheet with a finite number of disclinations in a variational framework in the F\"oppl-von K\'arm\'an approximation. Under the non-physical assumption that the out-of-plane displacement is a convex function, we prove that mi
Externí odkaz:
http://arxiv.org/abs/2405.10097
Autor:
Gladbach, Peter, Kepka, Bernhard
We consider optimization problems for interacting particle systems. We show that critical points solve a Vlasov equation, and that in general no minimizers exist despite continuity of the action functional. We prove an explicit representation of the
Externí odkaz:
http://arxiv.org/abs/2404.04350
Autor:
Gladbach, Peter, Olbermann, Heiner
We show that integral curvature energies on surfaces of the type $E_0(M) := \int_M f(x,n_M(x),D n_M(x))\,d\mathcal{H}^2(x)$ have discrete versions for triangular complexes, where the shape operator $D n_M$ is replaced by the piecewise gradient of a p
Externí odkaz:
http://arxiv.org/abs/2302.01705
We study the gradient-flow structure of a non-Newtonian thin film equation with power-law rheology. The equation is quasilinear, of fourth order and doubly-degenerate parabolic. By adding a singular potential to the natural Dirichlet energy, we intro
Externí odkaz:
http://arxiv.org/abs/2301.10300
Autor:
Ginster, Janusz, Gladbach, Peter
We show that functions in $GSBV^p$ in three-dimensional space with small variation in $2$ of $3$ directions are close to a function of one variable outside an exceptional set. Bounds on the volume and the perimeter in these two directions of the exce
Externí odkaz:
http://arxiv.org/abs/2212.10199
Autor:
Gladbach, Peter, Ginster, Janusz
We show that the linear brittle Griffith energy on a thin rectangle $\Gamma$-converges after rescaling to the linear one-dimensional brittle Euler-Bernoulli beam energy. In contrast to the existing literature, we prove a corresponding sharp compactne
Externí odkaz:
http://arxiv.org/abs/2111.09706
This paper deals with the large-scale behaviour of dynamical optimal transport on $\mathbb{Z}^d$-periodic graphs with general lower semicontinuous and convex energy densities. Our main contribution is a homogenisation result that describes the effect
Externí odkaz:
http://arxiv.org/abs/2110.15321
Autor:
Ke, Yazi D., van Hummel, Annika, Au, Carol, Chan, Gabriella, Lee, Wei Siang, van der Hoven, Julia, Przybyla, Magdalena, Deng, Yuanyuan, Sabale, Miheer, Morey, Nicolle, Bertz, Josefine, Feiten, Astrid, Ippati, Stefania, Stevens, Claire H., Yang, Shu, Gladbach, Amadeus, Haass, Nikolas K., Kril, Jillian J., Blair, Ian P., Delerue, Fabien, Ittner, Lars M.
Publikováno v:
In Neuron 17 April 2024 112(8):1249-1264