Zobrazeno 1 - 10
of 11 552
pro vyhledávání: '"A. Galuppi"'
Autor:
Carolyn C. Dunlop
A performing edition of nineteenth century Russian choral pieces by a range of composers in a variety of styles, this volume was prepared to accompany the book The Russian Court Chapel Choir by Carolyn C. Dunlop.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
The signature of a path is a sequence of tensors which allows to uniquely reconstruct the path. In this paper we propose a systematic study of basic properties of signature tensors, starting from their rank, symmetries and conciseness. We prove a sha
Externí odkaz:
http://arxiv.org/abs/2407.20405
We prove that Segre-Veronese varieties are never secant defective if each degree is at least three. The proof is by induction on the number of factors, degree and dimension. As a corollary, we give an almost optimal non-defectivity result for Segre-V
Externí odkaz:
http://arxiv.org/abs/2406.20057
Autor:
MAGAROTTO, MATTEO1
Publikováno v:
Notes. Dec2014, Vol. 71 Issue 2, p340-345. 6p.
Autor:
ORGA, ATEŞ
Publikováno v:
International Piano. May2023, Issue 92, p56-56. 1/3p.
After a few results on curves, we characterize the smallest nonempty Terracini loci of Veronese and Segre-Veronese varieties. For del Pezzo surfaces, we give a full description of the Terracini loci. Moreover, we present an algorithm to explicitly co
Externí odkaz:
http://arxiv.org/abs/2311.09067
Autor:
Améndola, Carlos, Galuppi, Francesco, Ortiz, Ángel David Ríos, Santarsiero, Pierpaola, Seynnaeve, Tim
The signature of a path is a sequence of tensors whose entries are iterated integrals, playing a key role in stochastic analysis and applications. The set of all signature tensors at a particular level gives rise to the universal signature variety. W
Externí odkaz:
http://arxiv.org/abs/2308.11571
We lay the geometric foundations for the study of the characteristic polynomial of tensors. For symmetric tensors of order $d \geq 3$ and dimension $2$ and symmetric tensors of order $3$ and dimension $3$, we prove that only finitely many tensors sha
Externí odkaz:
http://arxiv.org/abs/2308.10957
Autor:
Rudelli, Cecilia1 (AUTHOR) cecilia.rudelli2@unibo.it, Galuppi, Roberta1 (AUTHOR) roberta.galuppi@unibo.it, Cabbri, Riccardo1 (AUTHOR) rccabbri@gmail.com, Dalmonte, Thomas1 (AUTHOR) thomas.dalmonte2@unibo.it, Fontanesi, Luca2 (AUTHOR) luca.fontanesi@unibo.it, Andreani, Giulia1 (AUTHOR) giulia.andreani2@unibo.it, Isani, Gloria1 (AUTHOR) gloria.isani@unibo.it
Publikováno v:
Animals (2076-2615). Aug2024, Vol. 14 Issue 15, p2183. 16p.