Zobrazeno 1 - 10
of 69 498
pro vyhledávání: '"A. Farre"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Farré, Valdemar, Estrada-Jiménez, Juan C., Sánchez, José D. Vega, Vasquez-Peralvo, Juan A., Chatzinotas, Symeon
In recent years, the fifth-generation (5G) mobile network has been developed worldwide to remarkably improve network performance and spectral efficiency. Very recently, reconfigurable intelligent surfaces (RISs) technology has emerged as an innovativ
Externí odkaz:
http://arxiv.org/abs/2412.05385
Autor:
Estrada-Jimenez, Juan Carlos, Farre-Guijarro, Valdemar Ramon, Alvarez-Paredes, Diana Carolina, Watrinet, Marie-Laure
Operational data in next-generation networks offers a valuable resource for Mobile Network Operators to autonomously manage their systems and predict potential network issues. Machine Learning and Digital Twin can be applied to gain important insight
Externí odkaz:
http://arxiv.org/abs/2411.11034
Autor:
Solé-Farré, Enric
Nearly K\"ahler and Einstein structures admit a variational characterization, where the second variation is associated with a strongly elliptic operator. This allows us to associate a Morse-like index to each structure. Our study focuses on how these
Externí odkaz:
http://arxiv.org/abs/2410.21106
Autor:
Solé-Farré, Enric
We investigate generalisations of Hitchin's functionals, whose critical points correspond to nearly K\"ahler and nearly parallel $G_2$-structures. Our focus is on the gradient flow of these functionals and the spectral decomposition of their Hessians
Externí odkaz:
http://arxiv.org/abs/2410.21103
Goldman defined a symplectic form on the smooth locus of the $G$-character variety of a closed, oriented surface $S$ for a Lie group $G$ satisfying very general hypotheses. He then studied the Hamiltonian flows associated to $G$-invariant functions $
Externí odkaz:
http://arxiv.org/abs/2410.05154
We fully describe all horocycle orbit closures in $ \mathbb{Z} $-covers of compact hyperbolic surfaces. Our results rely on a careful analysis of the efficiency of all distance minimizing geodesic rays in the cover. As a corollary we obtain in this s
Externí odkaz:
http://arxiv.org/abs/2409.10004
We study the geometry of hyperconvex representations of surface groups in ${\rm PSL}(d,\mathbb{C})$ and their deformation spaces: We produce a natural holomorphic extension of the classical Ahlfors--Bers map to a product of Teichm\"uller spaces of a
Externí odkaz:
http://arxiv.org/abs/2407.20071
Divergence constraints are present in the governing equations of numerous physical phenomena, and they usually lead to a Poisson equation whose solution represents a bottleneck in many simulation codes. Algebraic Multigrid (AMG) is arguably the most
Externí odkaz:
http://arxiv.org/abs/2407.05930
Autor:
Baldelli, Niccolò, Montorsi, Arianna, Julià-Farré, Sergi, Lewenstein, Maciej, Rizzi, Matteo, Barbiero, Luca
Deconfined quantum critical points are exotic transition points not predicted by the Landau-Ginzburg-Wilson symmetry-breaking paradigm. They are associated to a one-point gap closing between distinct locally ordered phases, thus to a continuous phase
Externí odkaz:
http://arxiv.org/abs/2407.04073