Zobrazeno 1 - 10
of 26
pro vyhledávání: '"A. Faramarzi Salles"'
Autor:
Assadollah Faramarzi Salles
Publikováno v:
پژوهشهای ریاضی, Vol 8, Iss 1, Pp 215-223 (2022)
Let G be a group. Neumann to answer a question of Paul Erdos proved that every infinite subset of G has two different comuting elements if and only if G is center-by-finite. In this paper, we deal with Erdoschr('39')s question in different aspect and
Externí odkaz:
https://doaj.org/article/7429cb95445f43f9830d76a6f5c48e90
Publikováno v:
International Journal of Group Theory, Vol 7, Iss 4, Pp 1-7 (2018)
Let $G$ be a group, we say that $G$ satisfies the property $mathcal{T}(infty)$ provided that, every infinite set of elements of $G$ contains elements $xneq y, z$ such that $[x, y, z]=1=[y, z, x]=[z, x
Externí odkaz:
https://doaj.org/article/2d7b9c96b83b4958adc1a5220e42af13
Publikováno v:
International Journal of Group Theory, Vol 3, Iss 3, Pp 35-38 (2014)
Let $G$ be an infinite group and $nin {3, 6}cup{2^k| kin mathbb{N}}$. In this paper, we prove that $G$ is an $n$-Kappe group if and only if for any two infinite subsets $X$ and $Y$ of $G$, there exist $xin X$ and $yin Y$ such
Externí odkaz:
https://doaj.org/article/41ecfa9ea2fd492b829b8a4c65d0955a
Publikováno v:
Communications in Algebra. 47:182-187
A group G is called n-centralizer if it has n distinct centralizers. In this paper, in analogs to n-centralizer, we say a group G is n-exterior centralizer provided G has n distinct exterior centralizers. The current paper is devoted to characterize
Autor:
FARAMARZI SALLES, A.1 faramarzi@du.ac.ir, KHOSRAVI, H.2 hassan_khosravy@yahoo.com
Publikováno v:
International Journal of Group Theory. Sep2014, Vol. 3 Issue 3, p35-38. 4p.
Autor:
Asadollah Faramarzi Salles
Publikováno v:
Algebra Colloquium. 23:423-425
Let n ≠ 0, 1 be an integer and [Formula: see text] be the variety of n-Bell groups defined by the law [xn,y][x,yn]-1 = 1. Let [Formula: see text] be the class of groups in which for any infinite subsets X and Y there exist x ∈ X and y ∈ Y such
Autor:
Hassan Khosravi, A. Faramarzi Salles
Publikováno v:
Journal of Algebra and Its Applications. 19:2050191
In this paper, we study 3-Thue–Morse groups, but these are the groups satisfying the semigroup identity [Formula: see text]. We prove that if [Formula: see text] is a 3-Thue–Morse group then [Formula: see text] is soluble for every [Formula: see
Autor:
Khosravi, H., Faramarzi Salles, A.
Publikováno v:
Journal of Algebra & Its Applications; Oct2020, Vol. 19 Issue 10, pN.PAG-N.PAG, 5p
Autor:
Asadollah Faramarzi Salles
Publikováno v:
Bulletin of the Australian Mathematical Society. 87:152-157
Let G be a group. We say that G∈𝒯(∞) provided that every infinite set of elements of G contains three distinct elements x,y,z such that x≠y,[x,y,z]=1=[y,z,x]=[z,x,y]. We use this to show that for a finitely generated soluble group G, G/Z2(G)
Publikováno v:
Communications in Algebra. 39:209-219
Let n be an integer greater than 1. A group G is said to be n-rewritable (or a Q n -group) if for every n elements x 1, x 2,…, x n in G there exist distinct permutations σ and τ in S n such that x σ(1) x σ(2)…x σ(n) = x τ(1) x τ(2)…x τ(