Zobrazeno 1 - 10
of 971
pro vyhledávání: '"A. Elgendi"'
Autor:
Elgendi, Salah G.
Publikováno v:
AIMS Mathematics (2024)
In this paper, we investigate the existence of parallel 1-forms on specific Finsler manifolds. We demonstrate that Landsberg manifolds admitting a parallel 1-form have a mean Berwald curvature of rank at most $n-2$. As a result, Landsberg surfaces wi
Externí odkaz:
http://arxiv.org/abs/2412.08743
Autor:
Elgendi, Salah G., Muzsnay, Zoltan
Publikováno v:
Aims Mathematics - 2024
In this paper, for a given spray $S$ on an $n$-dimensional manifold $M$, we investigate the geometry of $S$-invariant functions. For an $S$-invariant function $\P$, we associate a vertical subdistribution $\V_\P$ and find the relation between the hol
Externí odkaz:
http://arxiv.org/abs/2408.05848
Autor:
Elgendi, S. G.
In this paper, studying the inverse problem, we establish a curvature compatibility condition on a spherically symmetric Finsler metric. As an application, we characterize the spherically symmetric metrics of scalar curvature. We construct a Berwald
Externí odkaz:
http://arxiv.org/abs/2407.03855
The present work is devoted to investigate anisotropic conformal transformation of conic pseudo-Finsler surfaces $(M,F)$, that is, $ F(x,y)\longmapsto \overline{F}(x,y)=e^{\phi(x,y)}F(x,y)$, where the function $\phi(x,y)$ depends on both position $x$
Externí odkaz:
http://arxiv.org/abs/2404.15659
Autor:
Voicu, Nicoleta, Elgendi, Salah Gomaa
Publikováno v:
Classical and Quantum Gravity 41 (2024) 155012
For a torsion-free affine connection on a given manifold, which does not necessarily arise as the Levi-Civita connection of any pseudo-Riemannian metric, it is still possible that it corresponds in a canonical way to a Finsler structure; this propert
Externí odkaz:
http://arxiv.org/abs/2404.02980
For a Finsler metric $F$, we introduce the notion of $F$-covariant coefficients $H_i$ of the geodesic spray of $F$ (Def. 3.1). We study some geometric consequences concerning the objects $H_i$. If the $F$-covariant coefficients $H_i$ are written in t
Externí odkaz:
http://arxiv.org/abs/2404.07995
Autor:
Elgendi, Salah G.
Publikováno v:
Journal of Geoemtry and Physics, 2024
In this paper, for Finsler surfaces, we prove that the T-condition and $\sigma T$-condition coincide. For higher dimensions $n\geq 3$, we illustrate by an example that the T-condition and $\sigma T$-condition are not equivalent. We show that the non-
Externí odkaz:
http://arxiv.org/abs/2401.15873
Autor:
Luana Nyirö, Lindsay M. Gorrell, Valentina Cecchini, Carlo Menon, Mohamed Elgendi, Petra Schweinhardt
Publikováno v:
Chiropractic & Manual Therapies, Vol 32, Iss 1, Pp 1-17 (2024)
Abstract Background As part of multimodal therapy, spinal manipulation (SM) is a recommended and effective treatment for musculoskeletal pain. However, the underlying physiological mechanisms for pain relief are largely unknown. SM thrusts can be des
Externí odkaz:
https://doaj.org/article/f453bf46ba0a41219b639632a22aa0f0
Autor:
Maryam Nooman AlMallahi, Ibrahim Abdelfadeel Shaban, Amal Alkaabi, Alyaziya Alkaabi, Hajar Alnuaimi, Shamsa Alketbi, Mahmoud Elgendi
Publikováno v:
Alexandria Engineering Journal, Vol 106, Iss , Pp 632-645 (2024)
In response to the escalating issue of water scarcity, the United Nations has allocated Sustainable Development Goal 6 of ‘Clean Water and Sanitation’ to address the issue by providing clean water and improved sanitation. Solar stills are an attr
Externí odkaz:
https://doaj.org/article/6c48999fd12a477f9521cfe5ce5390a9
Autor:
Soleiman, Amr, Elgendi, Salah G.
In this paper, we study the unicorn's Landsberg problem from an intrinsic point of view. Precisely, we investigate a coordinate-free proof of Numata's theorem on Landsberg spaces of scalar curvature. In other words, following the pullback approach to
Externí odkaz:
http://arxiv.org/abs/2304.07925