Zobrazeno 1 - 10
of 27
pro vyhledávání: '"A. D. Rukhovich"'
Autor:
Tatiana A. Mikhnevich, Vitaly G. Grigorenko, Maya Yu. Rubtsova, Gleb D. Rukhovich, Sun Yiming, Anna N. Khreptugova, Kirill V. Zaitsev, Irina V. Perminova
Publikováno v:
ACS Omega, Vol 9, Iss 1, Pp 1858-1869 (2023)
Externí odkaz:
https://doaj.org/article/d1acaa1b7c75425a810c349b5c74e58e
Publikováno v:
Remote Sensing, Vol 15, Iss 18, p 4491 (2023)
For most of the arable land in Russia (132–137 million ha), the dominant and accurate soil information is stored in the form of map archives on paper without coordinate reference. The last traditional soil map(s) (TSM, TSMs) were created over 30 ye
Externí odkaz:
https://doaj.org/article/98c49f993fb644baa7f019f8d397665e
Autor:
Tatyana A. Mikhnevich, Alexandra V. Vyatkina (Turkova), Vitaly G. Grigorenko, Maya Yu. Rubtsova, Gleb D. Rukhovich, Maria A. Letarova, Darya S. Kravtsova, Sergey A. Vladimirov, Alexey A. Orlov, Evgeny N. Nikolaev, Alexander Zherebker, Irina V. Perminova
Publikováno v:
ACS Omega, Vol 6, Iss 37, Pp 23873-23883 (2021)
Externí odkaz:
https://doaj.org/article/06255b9962c747ee8360308b736cc98e
Publikováno v:
Remote Sensing, Vol 14, Iss 9, p 2224 (2022)
The detection of degraded soil distribution areas is an urgent task. It is difficult and very time consuming to solve this problem using ground methods. The modeling of degradation processes based on digital elevation models makes it possible to cons
Externí odkaz:
https://doaj.org/article/871ca178e6ee4f069458abc69e6e3895
Publikováno v:
Remote Sensing, Vol 15, Iss 1, p 124 (2022)
The long-term spectral characteristics of the bare soil surface (BSS) in the BLUE, GREEN, RED, NIR, SWIR1, and SWIR2 Landsat spectral bands are poorly studied. Most often, the RED and NIR spectral bands are used to analyze the spatial heterogeneity o
Externí odkaz:
https://doaj.org/article/2c08bcc33eed4af6b5f595155521cb4d
Publikováno v:
Remote Sensing, Vol 13, Iss 1, p 155 (2021)
Soil degradation processes are widespread on agricultural land. Ground-based methods for detecting degradation require a lot of labor and time. Remote methods based on the analysis of vegetation indices can significantly reduce the volume of ground s
Externí odkaz:
https://doaj.org/article/97aee5821cbc4b7e8a8cdea80d23a9c5
Autor:
D. D. Rukhovich
Publikováno v:
Programmnaya Ingeneria. 12:373-384
In this article, we introduce the task of multi-view RGB-based 3D object detection as an end-to-end optimization problem. In a multi-view formulation of the 3D object detection problem, several images of a static scene are used to detect objects in t
Autor:
Darya S. Kravtsova, Alexey A. Orlov, Alexander Zherebker, Evgeny N. Nikolaev, Tatyana A. Mikhnevich, Irina V. Perminova, Gleb D. Rukhovich, Maria A. Letarova, Maya Yu. Rubtsova, Sergey A. Vladimirov, Vitaly G. Grigorenko, Alexandra V. Vyatkina
Publikováno v:
ACS Omega, Vol 6, Iss 37, Pp 23873-23883 (2021)
Antimicrobial resistance is a global threat. The use of biologically active natural products alone or in combination with the clinically proven antimicrobial agents might be a useful strategy to fight the resistance. The scientific hypotheses of this
Autor:
D. D. Rukhovich
Publikováno v:
Programmnaya Ingeneria. 12:31-39
Deep learning-based detectors usually produce a redundant set of object bounding boxes including many duplicate detections of the same object. These boxes are then filtered using non-maximum suppression (NMS) in order to select exactly one bounding b
Autor:
Sunghwan Kim, Evgeny A. Shirshin, Robert G. M. Spencer, Gleb D. Rukhovich, Mourad Harir, Norbert Hertkorn, Nissa Nurfajin, Sergey A. Berezin, Irina V. Perminova, Dmitry S. Kats, Philippe Schmitt-Kopplin, Eugene N. Nikolaev, Alexander Zherebker, David C. Podgorski, Boris P. Koch, Oliver J. Lechtenfeld
Publikováno v:
Pure Appl. Chem. 92, 1447–1467 (2020)
Interlaboratory comparison on the determination of the molecular composition of humic substances (HS) was undertaken in the framework of IUPAC project 2016-015-2-600. The analysis was conducted using high resolution mass spectrometry, nominally, Four