Zobrazeno 1 - 10
of 3 130
pro vyhledávání: '"A. Coudray"'
Autor:
Coudray, Armand
We construct the conformal scattering operator for the scalar wave equation on the Vaidya spacetime using vector field methods. The spacetime we consider is Schwarzschild, near both past and future timelike infinities, in order to use existing decay
Externí odkaz:
http://arxiv.org/abs/2405.08659
Autor:
Benetos, Athanasios, Coudray, Olivier, Gégout-Petit, Anne, Lenôtre, Lionel, Toupance, Simon, Villemonais, Denis
We build and study an individual based model of the telomere length's evolution in a population across multiple generations. This model is a continuous time typed branching process, where the type of an individual includes its gamete mean telomere le
Externí odkaz:
http://arxiv.org/abs/2311.09678
Autor:
Adalberto Claudio Quiros, Nicolas Coudray, Anna Yeaton, Xinyu Yang, Bojing Liu, Hortense Le, Luis Chiriboga, Afreen Karimkhan, Navneet Narula, David A. Moore, Christopher Y. Park, Harvey Pass, Andre L. Moreira, John Le Quesne, Aristotelis Tsirigos, Ke Yuan
Publikováno v:
Nature Communications, Vol 15, Iss 1, Pp 1-24 (2024)
Abstract Cancer diagnosis and management depend upon the extraction of complex information from microscopy images by pathologists, which requires time-consuming expert interpretation prone to human bias. Supervised deep learning approaches have prove
Externí odkaz:
https://doaj.org/article/24019f1068da441492cffc896558e017
Autor:
Coudray, Armand
We study the peeling for the wave equation on the Vaidya spacetime following the approach developed by Mason and Nicolas in Mason-Nicolas 2009. The idea is to encode the regularity at null infinity of the rescaled field, characterised by Sobolev-type
Externí odkaz:
http://arxiv.org/abs/2205.10229
Autor:
Quiros, Adalberto Claudio, Coudray, Nicolas, Yeaton, Anna, Yang, Xinyu, Liu, Bojing, Le, Hortense, Chiriboga, Luis, Karimkhan, Afreen, Narula, Navneet, Moore, David A., Park, Christopher Y., Pass, Harvey, Moreira, Andre L., Quesne, John Le, Tsirigos, Aristotelis, Yuan, Ke
Definitive cancer diagnosis and management depend upon the extraction of information from microscopy images by pathologists. These images contain complex information requiring time-consuming expert human interpretation that is prone to human bias. Su
Externí odkaz:
http://arxiv.org/abs/2205.01931
Autor:
Beddaa, Hamza, Somé, Saannibe Ciryle, Ben Fraj, Amor, Coudray, Coryse, Branche, Emmanuel, Cudeville, Amaury
Publikováno v:
In International Journal of Sediment Research December 2024 39(6):971-983
Autor:
Coudray, Théotime
Publikováno v:
In Electric Power Systems Research April 2025 241
Autor:
Stephanie Nougaret, Leo Razakamanantsoa, Elizabeth A. Sadowski, Erica B. Stein, Yulia Lakhman, Nicole M. Hindman, Aurelie Jalaguier-Coudray, Andrea G. Rockall, Isabelle Thomassin-Naggara
Publikováno v:
Insights into Imaging, Vol 15, Iss 1, Pp 1-18 (2024)
Abstract In 2021, the American College of Radiology (ACR) Ovarian-Adnexal Reporting and Data System (O-RADS) MRI Committee developed a risk stratification system and lexicon for assessing adnexal lesions using MRI. Like the BI-RADS classification, O-
Externí odkaz:
https://doaj.org/article/05ee0c8329c64c8881c9fbae5fd6bb99
Positive-unlabeled learning (PU learning) is known as a special case of semi-supervised binary classification where only a fraction of positive examples are labeled. The challenge is then to find the correct classifier despite this lack of informatio
Externí odkaz:
http://arxiv.org/abs/2201.06277
Autor:
Quiros, Adalberto Claudio, Coudray, Nicolas, Yeaton, Anna, Sunhem, Wisuwat, Murray-Smith, Roderick, Tsirigos, Aristotelis, Yuan, Ke
Deep learning based analysis of histopathology images shows promise in advancing the understanding of tumor progression, tumor micro-environment, and their underpinning biological processes. So far, these approaches have focused on extracting informa
Externí odkaz:
http://arxiv.org/abs/2108.02223