Zobrazeno 1 - 10
of 1 755
pro vyhledávání: '"A. Bukhsh"'
Autor:
I. Husain, M. Umer, M. Asif, A. Bukhsh, T. Kiran, M. Ansari, H. Aslam, M. Bhatia, F. Dogar, O. Husain, H. A. Khan, A. A. Mufti, B. Mulsant, F. Naeem, H. A. Naqvi, C. De Oliveria, S. Siddiqui, A. Tamizuddin, W. Wang, J. Zaheer, N. Husain, N. Chaudhry, I. Chaudhry
Publikováno v:
European Psychiatry, Vol 66, Pp S384-S384 (2023)
Introduction Bipolar disorder (BD) is a source of marked disability, morbidity, and premature death. There is a paucity of research on personalized psychosocial interventions for BD, especially in lowresource settings. A previously published pilot ra
Externí odkaz:
https://doaj.org/article/36e90d9f46674ec6a3b945dbf23d87bc
Autor:
I. Husain, M. Umer, Z. Nigah, T. Kiran, A. Bukhsh, M. Ansari, M. R. Bhatia, O. Husain, H. Naqvi, A. Qadir, M. Saqib, A. H. Rajput, M. A. Zeb, S. A. Khan, K. M. S. Siddiqui, S. Sherzad, B. Mulsant, N. Chaudhry, I. Chaudhry, N. Husain
Publikováno v:
European Psychiatry, Vol 66, Pp S836-S836 (2023)
Introduction Low and middle-income countries (LMICs) hold the majority of disease burden attributed to major depressive disorder (MDD). Despite this, there remains a substantial gap for access to evidence-based treatments for MDD in LMICs like Pakist
Externí odkaz:
https://doaj.org/article/b10168cf944f4910968e08e7f4094ed6
The Job Shop Scheduling Problem (JSSP) is a complex combinatorial optimization problem. There has been growing interest in using online Reinforcement Learning (RL) for JSSP. While online RL can quickly find acceptable solutions, especially for larger
Externí odkaz:
http://arxiv.org/abs/2409.10589
Autor:
Jimenez-Roa, Lisandro A., Simão, Thiago D., Bukhsh, Zaharah, Tinga, Tiedo, Molegraaf, Hajo, Jansen, Nils, Stoelinga, Marielle
Publikováno v:
Proceedings of the 8th European Conference of The Prognostics and Health Management Society 2024
Large-scale infrastructure systems are crucial for societal welfare, and their effective management requires strategic forecasting and intervention methods that account for various complexities. Our study addresses two challenges within the Prognosti
Externí odkaz:
http://arxiv.org/abs/2407.12894
Autor:
Smit, Igor G., Zhou, Jianan, Reijnen, Robbert, Wu, Yaoxin, Chen, Jian, Zhang, Cong, Bukhsh, Zaharah, Nuijten, Wim, Zhang, Yingqian
Job shop scheduling problems (JSSPs) represent a critical and challenging class of combinatorial optimization problems. Recent years have witnessed a rapid increase in the application of graph neural networks (GNNs) to solve JSSPs, albeit lacking a s
Externí odkaz:
http://arxiv.org/abs/2406.14096
Autor:
van Remmerden, Jesse, Kenter, Maurice, Roijers, Diederik M., Andriotis, Charalampos, Zhang, Yingqian, Bukhsh, Zaharah
In this paper, we introduce Multi-Objective Deep Centralized Multi-Agent Actor-Critic (MO- DCMAC), a multi-objective reinforcement learning (MORL) method for infrastructural maintenance optimization, an area traditionally dominated by single-objectiv
Externí odkaz:
http://arxiv.org/abs/2406.06184
Autor:
Smit, Igor G., Bukhsh, Zaharah, Pechenizkiy, Mykola, Alogariastos, Kostas, Hendriks, Kasper, Zhang, Yingqian
In collaborative human-robot order picking systems, human pickers and Autonomous Mobile Robots (AMRs) travel independently through a warehouse and meet at pick locations where pickers load items onto the AMRs. In this paper, we consider an optimizati
Externí odkaz:
http://arxiv.org/abs/2404.08006
Within the domain of e-commerce retail, an important objective is the reduction of parcel loss during the last-mile delivery phase. The ever-increasing availability of data, including product, customer, and order information, has made it possible for
Externí odkaz:
http://arxiv.org/abs/2310.16602
We introduce an open-source GitHub repository containing comprehensive benchmarks for a wide range of machine scheduling problems, including Job Shop Scheduling (JSP), Flow Shop Scheduling (FSP), Flexible Job Shop Scheduling (FJSP), FJSP with Assembl
Externí odkaz:
http://arxiv.org/abs/2308.12794
Publikováno v:
Journal of Machine Learning Research 25.105 (2024): 1-34
In this study we evaluate 32 unsupervised anomaly detection algorithms on 52 real-world multivariate tabular datasets, performing the largest comparison of unsupervised anomaly detection algorithms to date. On this collection of datasets, the $k$-thN
Externí odkaz:
http://arxiv.org/abs/2305.00735